Abbas, A. & Zackular, J. P. Microbe–microbe interactions throughout Clostridioides difficile an infection. Curr. Opin. Microbiol. 53, 19–25 (2020).
Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).
Lessa, F. C., Winston, L. G. & McDonald, L. C., Crew, E. I. P. C. d. S. Burden of Clostridium difficile an infection in the US. N. Engl. J. Med. 372, 2369–2370 (2015).
Schubert, A. M. et al. Microbiome information distinguish sufferers with Clostridium difficile an infection and non-C. difficile-associated diarrhea from wholesome controls. mBio 5, e01021–01014 (2014).
Auchtung, J. M., Preisner, E. C., Collins, J., Lerma, A. I. & Britton, R. A. Identification of simplified microbial communities that inhibit Clostridioides difficile an infection by way of dilution/extinction. mSphere 5, e00387–20 (2020).
Zackular, J. P. et al. Dietary zinc alters the microbiota and reduces resistance to Clostridium difficile an infection. Nat. Med. 22, 1330–1334 (2016).
Tomkovich, S., Stough, J. M. A., Bishop, L. & Schloss, P. D. The preliminary intestine microbiota and response to antibiotic perturbation affect Clostridioides difficile clearance in mice. mSphere 5, e00869–20 (2020).
Berkell, M. et al. Microbiota-based markers predictive of improvement of Clostridioides difficile an infection. Nat. Commun. 12, 2241 (2021).
Antharam, V. C. et al. Intestinal dysbiosis and depletion of butyrogenic micro organism in Clostridium difficile an infection and nosocomial diarrhea. J. Clin. Microbiol. 51, 2884–2892 (2013).
Poduval, R. D., Kamath, R. P., Corpuz, M., Norkus, E. P. & Pitchumoni, C. S. Clostridium difficile and vancomycin-resistant Enterococcus: the brand new nosocomial alliance. Am. J. Gastroenterol. 95, 3513–3515 (2000).
Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic therapy in mice and precedes bloodstream invasion in people. J. Clin. Make investments. 120, 4332–4341 (2010).
Taur, Y. et al. Intestinal domination and the danger of bacteremia in sufferers present process allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012).
Willett, J. L. E. et al. Comparative biofilm assays utilizing Enterococcus faecalis OG1RF determine new determinants of biofilm formation. mBio 12, e0101121 (2021).
Willett, J. L. E., Robertson, E. B. & Dunny, G. M. The phosphatase Bph and peptidyl–prolyl isomerase PrsA are required for gelatinase expression and exercise in Enterococcus faecalis. J. Bacteriol. 204, e0012922 (2022).
Lee, I. P. A., Eldakar, O. T., Gogarten, J. P. & Andam, C. P. Bacterial cooperation by way of horizontal gene switch. Developments Ecol. Evol. 37, 223–232 (2021).
Roberts, A. P. & Mullany, P. Tn916-like genetic components: a various group of modular cell components conferring antibiotic resistance. FEMS Microbiol. Rev. 35, 856–871 (2011).
Chambers, C. J., Roberts, A. Ok., Shone, C. C. & Acharya, Ok. R. Construction and performance of a Clostridium difficile sortase enzyme. Sci. Rep. 5, 9449 (2015).
Jenior, M. L. et al. Novel drivers of virulence in Clostridioides difficile recognized by way of context-specific metabolic community evaluation. mSystems 6, e0091921 (2021).
Fang, X., Lloyd, C. J. & Palsson, B. O. Reconstructing organisms in silico: genome-scale fashions and their rising functions. Nat. Rev. Microbiol. 18, 731–743 (2020).
Jenior, M. L., Moutinho, T. J., Dougherty, B. V. & Papin, J. A. Transcriptome-guided parsimonious flux evaluation improves predictions with metabolic networks in advanced environments. PLoS Comput. Biol. 16, e1007099 (2020).
Pruss, Ok. M. et al. Oxidative ornithine metabolism helps non-inflammatory C. difficile colonization. Nat Metab 4, 19–28 (2022).
Barker, H. A. Amino acid degradation by anaerobic micro organism. Annu. Rev. Biochem. 50, 23–40 (1981).
Matthews, M. L. et al. Chemoproteomic profiling and discovery of protein electrophiles in human cells. Nat. Chem. 9, 234–243 (2017).
Keogh, D. et al. Enterococcal metabolite cues facilitate interspecies area of interest modulation and polymicrobial an infection. Cell Host Microbe 20, 493–503 (2016).
Sundermann, A. J. et al. Entire genome sequencing surveillance and machine studying of the digital well being file for enhanced healthcare outbreak detection. Clin. Infect. Dis. 75, 476–482 (2021).
Bryan, N. C. et al. Genomic and practical characterization of Enterococcus faecalis isolates recovered from the Worldwide Area Station and their potential for pathogenicity. Entrance. Microbiol. 11, 515319 (2020).
Deibel, R. H. Utilization of arginine as an vitality supply for the expansion of Streptococcus faecalis. J. Bacteriol. 87, 988–992 (1964).
Fishbein, S. R. et al. Multi-omics investigation of Clostridioides difficile-colonized sufferers reveals pathogen and commensal correlates of C. difficile pathogenesis. eLife 11, e72801 (2022).
Karasawa, T., Maegawa, T., Nojiri, T., Yamakawa, Ok. & Nakamura, S. Impact of arginine on toxin manufacturing by Clostridium difficile in outlined medium. Microbiol. Immunol. 41, 581–585 (1997).
Fredrick, C. M., Lin, G. & Johnson, E. A. Regulation of botulinum neurotoxin synthesis and toxin advanced formation by arginine and glucose in Clostridium botulinum ATCC 3502. Appl. Environ. Microbiol. 83, e00642–17 (2017).
Bushman, F. D. et al. Multi-omic evaluation of the interplay between Clostridioides difficile an infection and pediatric inflammatory bowel illness. Cell Host Microbe 28, 422–433.e7 (2020).
Keith, J. W. et al. Impression of antibiotic-resistant micro organism on immune activation and Clostridioides difficile an infection within the mouse gut. Infect. Immun. 88, e00362–19 (2020).
Lesniak, N. A. et al. The intestine bacterial neighborhood potentiates Clostridioides difficile an infection severity. mBio 13, e0118322 (2022).
Girinathan, B. P. et al. In vivo commensal management of Clostridioides difficile virulence. Cell Host Microbe 29, 1693–1708.e1697 (2021).
Hirose, Y. et al. Streptococcus pyogenes upregulates arginine catabolism to exert its pathogenesis on the pores and skin floor. Cell Rep. 34, 108924 (2021).
Stabler, R. A. et al. Comparative genome and phenotypic evaluation of Clostridium difficile 027 strains offers perception into the evolution of a hypervirulent bacterium. Genome Biol. 10, R102 (2009).
Carter, G. P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal illness, systemic organ harm, and the host response throughout Clostridium difficile infections. mBio 6, e00551 (2015).
Hanahan, D. Research on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580 (1983).
Dale, J. L. et al. Complete practical evaluation of the Enterococcus faecalis core genome utilizing an ordered, sequence-defined assortment of insertional mutations in pressure OG1RF. mSystems 3, e00062–18 (2018).
Theriot, C. M. et al. Cefoperazone-treated mice as an experimental platform to evaluate differential virulence of Clostridium difficile strains. Intestine Microbes 2, 326–334 (2011).
Kumar, L., Cox, C. R. & Sarkar, S. Ok. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 14, e0210218 (2019).
Bloedt, Ok., Riecker, M., Poppert, S. & Wellinghausen, N. Analysis of recent selective tradition media and a fast fluorescence in situ hybridization assay for identification of Clostridium difficile from stool samples. J. Med. Microbiol. 58, 874–877 (2009).
Wellinghausen, N., Bartel, M., Essig, A. & Poppert, S. Fast identification of clinically related Enterococcus species by fluorescence in situ hybridization. J. Clin. Microbiol. 45, 3424–3426 (2007).
Knippel, R. J. et al. Heme sensing and detoxing by HatRT contributes to pathogenesis throughout Clostridium difficile an infection. PLoS Pathog. 14, e1007486 (2018).
Dixon, P. VEGAN, a package deal of R features for neighborhood ecology. J. Veg. Sci. 14, 927–930 (2003).
Calle, M. L., Urrea, V., Boulesteix, A. L. & Malats, N. AUC-RF: a brand new technique for genomic profiling with random forest. Hum. Hered. 72, 121–132 (2011).
Hankin, J. A., Barkley, R. M. & Murphy, R. C. Sublimation as a way of matrix software for mass spectrometric imaging. J. Am. Soc. Mass. Spectrom. 18, 1646–1652 (2007).
Thomas, A., Charbonneau, J. L., Fournaise, E. & Chaurand, P. Sublimation of recent matrix candidates for top spatial decision imaging mass spectrometry of lipids: enhanced data in each optimistic and unfavorable polarities after 1,5-diaminonapthalene deposition. Anal. Chem. 84, 2048–2054 (2012).
Yang, J. & Caprioli, R. M. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at excessive spatial decision. Anal. Chem. 83, 5728–5734 (2011).
Prentice, B. M. et al. Dynamic vary growth by gas-phase ion fractionation and enrichment for imaging mass spectrometry. Anal. Chem. 92, 13092–13100 (2020).
Schneider, C. A., Rasband, W. S. & Eliceiri, Ok. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).
Jackson, S., Calos, M., Myers, A. & Self, W. T. Evaluation of proline discount within the nosocomial pathogen Clostridium difficile. J. Bacteriol. 188, 8487–8495 (2006).
Evans, D. R. et al. Systematic detection of horizontal gene switch throughout genera amongst multidrug-resistant micro organism in a single hospital. eLife 9, e53886 (2020).
Seemann, T. Prokka: fast prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).
Shannon, P. et al. Cytoscape: a software program surroundings for built-in fashions of biomolecular interplay networks. Genome Res. 13, 2498–2504 (2003).
Bryan, E. M., Bae, T., Kleerebezem, M. & Dunny, G. M. Improved vectors for nisin-controlled expression in Gram-positive micro organism. Plasmid 44, 183–190 (2000).
Chilambi, G. S. et al. Evolution of vancomycin-resistant Enterococcus faecium throughout colonization and an infection in immunocompromised pediatric sufferers. Proc. Natl Acad. Sci. USA 117, 11703–11714 (2020).
Web page, A. J. et al. Roary: fast large-scale prokaryote pan genome evaluation. Bioinformatics 31, 3691–3693 (2015).
Obeid, J. S. et al. Procurement of shared information devices for Analysis Digital Information Seize (REDCap). J. Biomed. Inform. 46, 259–265 (2013).