Enterococci improve Clostridioides difficile pathogenesis

  • Abbas, A. & Zackular, J. P. Microbe–microbe interactions throughout Clostridioides difficile an infection. Curr. Opin. Microbiol. 53, 19–25 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lessa, F. C., Winston, L. G. & McDonald, L. C., Crew, E. I. P. C. d. S. Burden of Clostridium difficile an infection in the US. N. Engl. J. Med. 372, 2369–2370 (2015).

    PubMed 

    Google Scholar
     

  • Schubert, A. M. et al. Microbiome information distinguish sufferers with Clostridium difficile an infection and non-C. difficile-associated diarrhea from wholesome controls. mBio 5, e01021–01014 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Auchtung, J. M., Preisner, E. C., Collins, J., Lerma, A. I. & Britton, R. A. Identification of simplified microbial communities that inhibit Clostridioides difficile an infection by way of dilution/extinction. mSphere 5, e00387–20 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zackular, J. P. et al. Dietary zinc alters the microbiota and reduces resistance to Clostridium difficile an infection. Nat. Med. 22, 1330–1334 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tomkovich, S., Stough, J. M. A., Bishop, L. & Schloss, P. D. The preliminary intestine microbiota and response to antibiotic perturbation affect Clostridioides difficile clearance in mice. mSphere 5, e00869–20 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berkell, M. et al. Microbiota-based markers predictive of improvement of Clostridioides difficile an infection. Nat. Commun. 12, 2241 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Antharam, V. C. et al. Intestinal dysbiosis and depletion of butyrogenic micro organism in Clostridium difficile an infection and nosocomial diarrhea. J. Clin. Microbiol. 51, 2884–2892 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Poduval, R. D., Kamath, R. P., Corpuz, M., Norkus, E. P. & Pitchumoni, C. S. Clostridium difficile and vancomycin-resistant Enterococcus: the brand new nosocomial alliance. Am. J. Gastroenterol. 95, 3513–3515 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Ubeda, C. et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic therapy in mice and precedes bloodstream invasion in people. J. Clin. Make investments. 120, 4332–4341 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taur, Y. et al. Intestinal domination and the danger of bacteremia in sufferers present process allogeneic hematopoietic stem cell transplantation. Clin. Infect. Dis. 55, 905–914 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Willett, J. L. E. et al. Comparative biofilm assays utilizing Enterococcus faecalis OG1RF determine new determinants of biofilm formation. mBio 12, e0101121 (2021).

    PubMed 

    Google Scholar
     

  • Willett, J. L. E., Robertson, E. B. & Dunny, G. M. The phosphatase Bph and peptidyl–prolyl isomerase PrsA are required for gelatinase expression and exercise in Enterococcus faecalis. J. Bacteriol. 204, e0012922 (2022).

    PubMed 

    Google Scholar
     

  • Lee, I. P. A., Eldakar, O. T., Gogarten, J. P. & Andam, C. P. Bacterial cooperation by way of horizontal gene switch. Developments Ecol. Evol. 37, 223–232 (2021).

    PubMed 

    Google Scholar
     

  • Roberts, A. P. & Mullany, P. Tn916-like genetic components: a various group of modular cell components conferring antibiotic resistance. FEMS Microbiol. Rev. 35, 856–871 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Chambers, C. J., Roberts, A. Ok., Shone, C. C. & Acharya, Ok. R. Construction and performance of a Clostridium difficile sortase enzyme. Sci. Rep. 5, 9449 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenior, M. L. et al. Novel drivers of virulence in Clostridioides difficile recognized by way of context-specific metabolic community evaluation. mSystems 6, e0091921 (2021).

    PubMed 

    Google Scholar
     

  • Fang, X., Lloyd, C. J. & Palsson, B. O. Reconstructing organisms in silico: genome-scale fashions and their rising functions. Nat. Rev. Microbiol. 18, 731–743 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jenior, M. L., Moutinho, T. J., Dougherty, B. V. & Papin, J. A. Transcriptome-guided parsimonious flux evaluation improves predictions with metabolic networks in advanced environments. PLoS Comput. Biol. 16, e1007099 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pruss, Ok. M. et al. Oxidative ornithine metabolism helps non-inflammatory C. difficile colonization. Nat Metab 4, 19–28 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barker, H. A. Amino acid degradation by anaerobic micro organism. Annu. Rev. Biochem. 50, 23–40 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • Matthews, M. L. et al. Chemoproteomic profiling and discovery of protein electrophiles in human cells. Nat. Chem. 9, 234–243 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Keogh, D. et al. Enterococcal metabolite cues facilitate interspecies area of interest modulation and polymicrobial an infection. Cell Host Microbe 20, 493–503 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sundermann, A. J. et al. Entire genome sequencing surveillance and machine studying of the digital well being file for enhanced healthcare outbreak detection. Clin. Infect. Dis. 75, 476–482 (2021).


    Google Scholar
     

  • Bryan, N. C. et al. Genomic and practical characterization of Enterococcus faecalis isolates recovered from the Worldwide Area Station and their potential for pathogenicity. Entrance. Microbiol. 11, 515319 (2020).

    PubMed 

    Google Scholar
     

  • Deibel, R. H. Utilization of arginine as an vitality supply for the expansion of Streptococcus faecalis. J. Bacteriol. 87, 988–992 (1964).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fishbein, S. R. et al. Multi-omics investigation of Clostridioides difficile-colonized sufferers reveals pathogen and commensal correlates of C. difficile pathogenesis. eLife 11, e72801 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karasawa, T., Maegawa, T., Nojiri, T., Yamakawa, Ok. & Nakamura, S. Impact of arginine on toxin manufacturing by Clostridium difficile in outlined medium. Microbiol. Immunol. 41, 581–585 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Fredrick, C. M., Lin, G. & Johnson, E. A. Regulation of botulinum neurotoxin synthesis and toxin advanced formation by arginine and glucose in Clostridium botulinum ATCC 3502. Appl. Environ. Microbiol. 83, e00642–17 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bushman, F. D. et al. Multi-omic evaluation of the interplay between Clostridioides difficile an infection and pediatric inflammatory bowel illness. Cell Host Microbe 28, 422–433.e7 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Keith, J. W. et al. Impression of antibiotic-resistant micro organism on immune activation and Clostridioides difficile an infection within the mouse gut. Infect. Immun. 88, e00362–19 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lesniak, N. A. et al. The intestine bacterial neighborhood potentiates Clostridioides difficile an infection severity. mBio 13, e0118322 (2022).

    PubMed 

    Google Scholar
     

  • Girinathan, B. P. et al. In vivo commensal management of Clostridioides difficile virulence. Cell Host Microbe 29, 1693–1708.e1697 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Hirose, Y. et al. Streptococcus pyogenes upregulates arginine catabolism to exert its pathogenesis on the pores and skin floor. Cell Rep. 34, 108924 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stabler, R. A. et al. Comparative genome and phenotypic evaluation of Clostridium difficile 027 strains offers perception into the evolution of a hypervirulent bacterium. Genome Biol. 10, R102 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carter, G. P. et al. Defining the roles of TcdA and TcdB in localized gastrointestinal illness, systemic organ harm, and the host response throughout Clostridium difficile infections. mBio 6, e00551 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hanahan, D. Research on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166, 557–580 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Dale, J. L. et al. Complete practical evaluation of the Enterococcus faecalis core genome utilizing an ordered, sequence-defined assortment of insertional mutations in pressure OG1RF. mSystems 3, e00062–18 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Theriot, C. M. et al. Cefoperazone-treated mice as an experimental platform to evaluate differential virulence of Clostridium difficile strains. Intestine Microbes 2, 326–334 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, L., Cox, C. R. & Sarkar, S. Ok. Matrix metalloprotease-1 inhibits and disrupts Enterococcus faecalis biofilms. PLoS One 14, e0210218 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloedt, Ok., Riecker, M., Poppert, S. & Wellinghausen, N. Analysis of recent selective tradition media and a fast fluorescence in situ hybridization assay for identification of Clostridium difficile from stool samples. J. Med. Microbiol. 58, 874–877 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • Wellinghausen, N., Bartel, M., Essig, A. & Poppert, S. Fast identification of clinically related Enterococcus species by fluorescence in situ hybridization. J. Clin. Microbiol. 45, 3424–3426 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Knippel, R. J. et al. Heme sensing and detoxing by HatRT contributes to pathogenesis throughout Clostridium difficile an infection. PLoS Pathog. 14, e1007486 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dixon, P. VEGAN, a package deal of R features for neighborhood ecology. J. Veg. Sci. 14, 927–930 (2003).


    Google Scholar
     

  • Calle, M. L., Urrea, V., Boulesteix, A. L. & Malats, N. AUC-RF: a brand new technique for genomic profiling with random forest. Hum. Hered. 72, 121–132 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Hankin, J. A., Barkley, R. M. & Murphy, R. C. Sublimation as a way of matrix software for mass spectrometric imaging. J. Am. Soc. Mass. Spectrom. 18, 1646–1652 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thomas, A., Charbonneau, J. L., Fournaise, E. & Chaurand, P. Sublimation of recent matrix candidates for top spatial decision imaging mass spectrometry of lipids: enhanced data in each optimistic and unfavorable polarities after 1,5-diaminonapthalene deposition. Anal. Chem. 84, 2048–2054 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. & Caprioli, R. M. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at excessive spatial decision. Anal. Chem. 83, 5728–5734 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prentice, B. M. et al. Dynamic vary growth by gas-phase ion fractionation and enrichment for imaging mass spectrometry. Anal. Chem. 92, 13092–13100 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schneider, C. A., Rasband, W. S. & Eliceiri, Ok. W. NIH Picture to ImageJ: 25 years of picture evaluation. Nat. Strategies 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jackson, S., Calos, M., Myers, A. & Self, W. T. Evaluation of proline discount within the nosocomial pathogen Clostridium difficile. J. Bacteriol. 188, 8487–8495 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, D. R. et al. Systematic detection of horizontal gene switch throughout genera amongst multidrug-resistant micro organism in a single hospital. eLife 9, e53886 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seemann, T. Prokka: fast prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Shannon, P. et al. Cytoscape: a software program surroundings for built-in fashions of biomolecular interplay networks. Genome Res. 13, 2498–2504 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryan, E. M., Bae, T., Kleerebezem, M. & Dunny, G. M. Improved vectors for nisin-controlled expression in Gram-positive micro organism. Plasmid 44, 183–190 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • Chilambi, G. S. et al. Evolution of vancomycin-resistant Enterococcus faecium throughout colonization and an infection in immunocompromised pediatric sufferers. Proc. Natl Acad. Sci. USA 117, 11703–11714 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Web page, A. J. et al. Roary: fast large-scale prokaryote pan genome evaluation. Bioinformatics 31, 3691–3693 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Obeid, J. S. et al. Procurement of shared information devices for Analysis Digital Information Seize (REDCap). J. Biomed. Inform. 46, 259–265 (2013).

    PubMed 

    Google Scholar
     

  • Leave a Comment