Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature 588, 135–140 (2020).
Wang, X. & Paigen, B. Genetics of variation in HDL ldl cholesterol in people and mice. Circ. Res. 96, 27–42 (2005).
Blau, N., van Spronsen, F. J. & Levy, H. L. Phenylketonuria. Lancet 376, 1417–1427 (2010).
Gieger, C. et al. Genetics meets metabolomics: a genome-wide affiliation examine of metabolite profiles in human serum. PLoS Genet. 4, e1000282 (2008).
Yu, B. et al. Genetic determinants influencing human serum metabolome amongst African People. PLoS Genet. 10, e1004212 (2014).
Gallois, A. et al. A complete examine of metabolite genetics reveals robust pleiotropy and heterogeneity throughout time and context. Nat. Commun. 10, 4788 (2019).
Wilmanski, T. et al. Blood metabolome predicts intestine microbiome α-diversity in people. Nat. Biotechnol. 37, 1217–1228 (2019).
Rothschild, D. et al. Surroundings dominates over host genetics in shaping human intestine microbiota. Nature 555, 210–215 (2018).
Goodrich, J. Okay. et al. Human genetics form the intestine microbiome. Cell 159, 789–799 (2014).
Nicholson, J. Okay. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).
Jiao, Y., Lu, Y. & Li, X.-Y. Farnesoid X receptor: a grasp regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol. Sin. 36, 44–50 (2015).
Zheng, X. et al. Hyocholic acid species enhance glucose homeostasis by means of a definite TGR5 and FXR signaling mechanism. Cell Metab. 33, 791–803 (2021).
Lees, H. J., Swann, J. R., Wilson, I. D., Nicholson, J. Okay. & Holmes, E. Hippurate: the pure historical past of a mammalian-microbial cometabolite. J. Proteome Res. 12, 1527–1546 (2013).
Nakamura, A. et al. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation within the colon. Nat. Commun. 12, 2105 (2021).
Vitali, C., Khetarpal, S. A. & Rader, D. J. HDL ldl cholesterol metabolism and the chance of CHD: new insights from human genetics. Curr. Cardiol. Rep. 19, 132 (2017).
Kenny, D. J. et al. Ldl cholesterol metabolism by uncultured human intestine micro organism influences host ldl cholesterol degree. Cell Host Microbe 28, 245–257 (2020).
Dayama, G., Priya, S., Niccum, D. E., Khoruts, A. & Blekhman, R. Interactions between the intestine microbiome and host gene regulation in cystic fibrosis. Genome Med. 12, 12 (2020).
Hunter, D. J. Gene-environment interactions in human ailments. Nat. Rev. Genet. 6, 287–298 (2005).
Liu, G. et al. Analyzing large-scale samples confirms the affiliation between the ABCA7 rs3764650 polymorphism and Alzheimer’s illness susceptibility. Mol. Neurobiol. 50, 757–764 (2014).
Cuyvers, E. et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer’s illness sufferers: a focused resequencing examine. Lancet Neurol. 14, 814–822 (2015).
Huynh, Okay. et al. Concordant peripheral lipidome signatures in two massive medical research of Alzheimer’s illness. Nat. Commun. 11, 5698 (2020).
Bosma, P. J. et al. Bilirubin UDP-glucuronosyltransferase 1 is the one related bilirubin glucuronidating isoform in man. J. Biol. Chem. 269, 17960–17964 (1994).
Wikoff, W. R. et al. Metabolomics evaluation reveals massive results of intestine microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).
Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl Acad. Sci. USA 107, 14390–14395 (2010).
Pallister, T. et al. Hippurate as a metabolomic marker of intestine microbiome range: modulation by food plan and relationship to metabolic syndrome. Sci. Rep. 7, 13670 (2017).
Brial, F. et al. Human and preclinical research of the host-gut microbiome co-metabolite hippurate as a marker and mediator of metabolic well being. Intestine 70, 2105–2114 (2021).
Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the intestine microbiome. Curr. Opin. Gastroenterol. 30, 332–338 (2014).
Winham, S. J. & Biernacka, J. M. Gene-environment interactions in genome-wide affiliation research: present approaches and new instructions. J. Little one Psychol. Psychiatry 54, 1120–1134 (2013).
Jain, M. et al. Metabolite profiling identifies a key function for glycine in fast most cancers cell proliferation. Science 336, 1040–1044 (2012).
Maceyka, M. & Spiegel, S. Sphingolipid metabolites in inflammatory illness. Nature 510, 58–67 (2014).
Matsumura, T. et al. N-acetyl-l-tyrosine is an intrinsic triggering issue of mitohormesis in careworn animals. EMBO Rep. 21, e49211 (2020).
de Aguiar Vallim, T. Q., Tarling, E. J. & Edwards, P. A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657–669 (2013).
King, C. D., Rios, G. R., Inexperienced, M. D. & Tephly, T. R. UDP-glucuronosyltransferases. Curr. Drug Metab. 1, 143–161 (2000).
Alnouti, Y. Bile acid sulfation: a pathway of bile acid elimination and detoxing. Toxicol. Sci. 108, 225–246 (2009).
Xiang, X. et al. Impact of SLCO1B1 polymorphism on the plasma concentrations of bile acids and bile acid synthesis marker in people. Pharmacogenet. Genomics 19, 447–457 (2009).
Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).
Tóth, B. et al. Human OATP1B1 (SLCO1B1) transports sulfated bile acids and bile salts with explicit effectivity. Toxicol. In Vitro 52, 189–194 (2018).
Meikle, P. J. & Summers, S. A. Sphingolipids and phospholipids in insulin resistance and associated metabolic issues. Nat. Rev. Endocrinol. 13, 79–91 (2017).
Chaurasia, B. et al. Focusing on a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019).
Mielke, M. M. et al. Serum ceramides improve the chance of Alzheimer illness: the Ladies’s Well being and Getting older Examine II. Neurology 79, 633–641 (2012).
Inexperienced, D. R. Apoptosis and sphingomyelin hydrolysis. The flip aspect. J. Cell Biol. 150, F5–F7 (2000).
Summers, S. A., Chaurasia, B. & Holland, W. L. Metabolic messengers: ceramides. Nat. Metab. 1, 1051–1058 (2019).
Johnson, E. L. et al. Sphingolipids produced by intestine micro organism enter host metabolic pathways impacting ceramide ranges. Nat. Commun. 11, 2471 (2020).
Ervin, R. B., Wright, J. D., Wang, C.-Y. & Kennedy-Stephenson, J. Dietary consumption of fat and fatty acids for the US inhabitants: 1999-2000. Adv. Information 348, 1–6 (2004).
Fan, Y., Meng, H.-M., Hu, G.-R. & Li, F.-L. Biosynthesis of nervonic acid and views for its manufacturing by microalgae and different microorganisms. Appl. Microbiol. Biotechnol. 102, 3027–3035 (2018).
Liu, X. et al. Mendelian randomization analyses help causal relationships between blood metabolites and the intestine microbiome. Nat. Genet. 54, 52–61 (2022).
Maddocks, O. D. Okay. et al. Modulating the therapeutic response of tumours to dietary serine and glycine hunger. Nature 544, 372–376 (2017).
Tevzadze, G. et al. Results of a intestine microbiome toxin, p-cresol, on the indices of social habits in rats. Neurophysiology 50, 372–377 (2018).
Oelberg, D. G., Little, J. M., Adcock, E. W. & Lester, R. Intestinal absorption of bile acid glucuronides in rats. Dig. Dis. Sci. 33, 1110–1115 (1988).
Creekmore, B. C. et al. Mouse intestine microbiome-encoded β-glucuronidases recognized utilizing metagenome evaluation guided by protein construction. mSystems 4, e00452–19 (2019).
Gloux, Okay. et al. A metagenomic β-glucuronidase uncovers a core adaptive operate of the human intestinal microbiome. Proc. Natl Acad. Sci. USA 108, 4539–4546 (2011).
Begley, M., Gahan, C. G. M. & Hill, C. The interplay between micro organism and bile. FEMS Microbiol. Rev. 29, 625–651 (2005).
Stankeviciute, G. et al. Convergent evolution of bacterial ceramide synthesis. Nat. Chem. Biol. 18, 305–312 (2021).
Dinoff, A., Herrmann, N. & Lanctôt, Okay. L. Ceramides and despair: a scientific assessment. J. Have an effect on. Disord. 213, 35–43 (2017).
Dekkers, Okay. F. et al. A web based atlas of human plasma metabolite signatures of intestine microbiome composition. Nat. Commun. 13, 5370 (2022).
Zubair, N. et al. Genetic predisposition impacts medical modifications in a life-style teaching program. Sci. Rep. 9, 6805 (2019).
Jiang, L. et al. A resource-efficient software for combined mannequin affiliation evaluation of large-scale knowledge. Nat. Genet. 51, 1749–1755 (2019).
Xu, C. et al. Estimating genome-wide significance for whole-genome sequencing research. Genet. Epidemiol. 38, 281–290 (2014).
Callahan, B. J. et al. DADA2: high-resolution pattern inference from Illumina amplicon knowledge. Nat. Strategies 13, 581–583 (2016).
Conomos, M. P., Reiner, A. P., Weir, B. S. & Thornton, T. A. Mannequin-free estimation of current genetic relatedness. Am. J. Hum. Genet. 98, 127–148 (2016).