Genome–microbiome interaction gives perception into the determinants of the human blood metabolome

  • Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature 588, 135–140 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, X. & Paigen, B. Genetics of variation in HDL ldl cholesterol in people and mice. Circ. Res. 96, 27–42 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blau, N., van Spronsen, F. J. & Levy, H. L. Phenylketonuria. Lancet 376, 1417–1427 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gieger, C. et al. Genetics meets metabolomics: a genome-wide affiliation examine of metabolite profiles in human serum. PLoS Genet. 4, e1000282 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yu, B. et al. Genetic determinants influencing human serum metabolome amongst African People. PLoS Genet. 10, e1004212 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gallois, A. et al. A complete examine of metabolite genetics reveals robust pleiotropy and heterogeneity throughout time and context. Nat. Commun. 10, 4788 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wilmanski, T. et al. Blood metabolome predicts intestine microbiome α-diversity in people. Nat. Biotechnol. 37, 1217–1228 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rothschild, D. et al. Surroundings dominates over host genetics in shaping human intestine microbiota. Nature 555, 210–215 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goodrich, J. Okay. et al. Human genetics form the intestine microbiome. Cell 159, 789–799 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicholson, J. Okay. et al. Host-gut microbiota metabolic interactions. Science 336, 1262–1267 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jiao, Y., Lu, Y. & Li, X.-Y. Farnesoid X receptor: a grasp regulator of hepatic triglyceride and glucose homeostasis. Acta Pharmacol. Sin. 36, 44–50 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zheng, X. et al. Hyocholic acid species enhance glucose homeostasis by means of a definite TGR5 and FXR signaling mechanism. Cell Metab. 33, 791–803 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lees, H. J., Swann, J. R., Wilson, I. D., Nicholson, J. Okay. & Holmes, E. Hippurate: the pure historical past of a mammalian-microbial cometabolite. J. Proteome Res. 12, 1527–1546 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nakamura, A. et al. Symbiotic polyamine metabolism regulates epithelial proliferation and macrophage differentiation within the colon. Nat. Commun. 12, 2105 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vitali, C., Khetarpal, S. A. & Rader, D. J. HDL ldl cholesterol metabolism and the chance of CHD: new insights from human genetics. Curr. Cardiol. Rep. 19, 132 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kenny, D. J. et al. Ldl cholesterol metabolism by uncultured human intestine micro organism influences host ldl cholesterol degree. Cell Host Microbe 28, 245–257 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dayama, G., Priya, S., Niccum, D. E., Khoruts, A. & Blekhman, R. Interactions between the intestine microbiome and host gene regulation in cystic fibrosis. Genome Med. 12, 12 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hunter, D. J. Gene-environment interactions in human ailments. Nat. Rev. Genet. 6, 287–298 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, G. et al. Analyzing large-scale samples confirms the affiliation between the ABCA7 rs3764650 polymorphism and Alzheimer’s illness susceptibility. Mol. Neurobiol. 50, 757–764 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuyvers, E. et al. Mutations in ABCA7 in a Belgian cohort of Alzheimer’s illness sufferers: a focused resequencing examine. Lancet Neurol. 14, 814–822 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Huynh, Okay. et al. Concordant peripheral lipidome signatures in two massive medical research of Alzheimer’s illness. Nat. Commun. 11, 5698 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bosma, P. J. et al. Bilirubin UDP-glucuronosyltransferase 1 is the one related bilirubin glucuronidating isoform in man. J. Biol. Chem. 269, 17960–17964 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wikoff, W. R. et al. Metabolomics evaluation reveals massive results of intestine microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Teufel, R. et al. Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc. Natl Acad. Sci. USA 107, 14390–14395 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pallister, T. et al. Hippurate as a metabolomic marker of intestine microbiome range: modulation by food plan and relationship to metabolic syndrome. Sci. Rep. 7, 13670 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Brial, F. et al. Human and preclinical research of the host-gut microbiome co-metabolite hippurate as a marker and mediator of metabolic well being. Intestine 70, 2105–2114 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ridlon, J. M., Kang, D. J., Hylemon, P. B. & Bajaj, J. S. Bile acids and the intestine microbiome. Curr. Opin. Gastroenterol. 30, 332–338 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winham, S. J. & Biernacka, J. M. Gene-environment interactions in genome-wide affiliation research: present approaches and new instructions. J. Little one Psychol. Psychiatry 54, 1120–1134 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Jain, M. et al. Metabolite profiling identifies a key function for glycine in fast most cancers cell proliferation. Science 336, 1040–1044 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Maceyka, M. & Spiegel, S. Sphingolipid metabolites in inflammatory illness. Nature 510, 58–67 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Matsumura, T. et al. N-acetyl-l-tyrosine is an intrinsic triggering issue of mitohormesis in careworn animals. EMBO Rep. 21, e49211 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Aguiar Vallim, T. Q., Tarling, E. J. & Edwards, P. A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657–669 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • King, C. D., Rios, G. R., Inexperienced, M. D. & Tephly, T. R. UDP-glucuronosyltransferases. Curr. Drug Metab. 1, 143–161 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Alnouti, Y. Bile acid sulfation: a pathway of bile acid elimination and detoxing. Toxicol. Sci. 108, 225–246 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xiang, X. et al. Impact of SLCO1B1 polymorphism on the plasma concentrations of bile acids and bile acid synthesis marker in people. Pharmacogenet. Genomics 19, 447–457 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Tóth, B. et al. Human OATP1B1 (SLCO1B1) transports sulfated bile acids and bile salts with explicit effectivity. Toxicol. In Vitro 52, 189–194 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Meikle, P. J. & Summers, S. A. Sphingolipids and phospholipids in insulin resistance and associated metabolic issues. Nat. Rev. Endocrinol. 13, 79–91 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaurasia, B. et al. Focusing on a ceramide double bond improves insulin resistance and hepatic steatosis. Science 365, 386–392 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mielke, M. M. et al. Serum ceramides improve the chance of Alzheimer illness: the Ladies’s Well being and Getting older Examine II. Neurology 79, 633–641 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inexperienced, D. R. Apoptosis and sphingomyelin hydrolysis. The flip aspect. J. Cell Biol. 150, F5–F7 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Summers, S. A., Chaurasia, B. & Holland, W. L. Metabolic messengers: ceramides. Nat. Metab. 1, 1051–1058 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, E. L. et al. Sphingolipids produced by intestine micro organism enter host metabolic pathways impacting ceramide ranges. Nat. Commun. 11, 2471 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ervin, R. B., Wright, J. D., Wang, C.-Y. & Kennedy-Stephenson, J. Dietary consumption of fat and fatty acids for the US inhabitants: 1999-2000. Adv. Information 348, 1–6 (2004).

  • Fan, Y., Meng, H.-M., Hu, G.-R. & Li, F.-L. Biosynthesis of nervonic acid and views for its manufacturing by microalgae and different microorganisms. Appl. Microbiol. Biotechnol. 102, 3027–3035 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Liu, X. et al. Mendelian randomization analyses help causal relationships between blood metabolites and the intestine microbiome. Nat. Genet. 54, 52–61 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Maddocks, O. D. Okay. et al. Modulating the therapeutic response of tumours to dietary serine and glycine hunger. Nature 544, 372–376 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tevzadze, G. et al. Results of a intestine microbiome toxin, p-cresol, on the indices of social habits in rats. Neurophysiology 50, 372–377 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Oelberg, D. G., Little, J. M., Adcock, E. W. & Lester, R. Intestinal absorption of bile acid glucuronides in rats. Dig. Dis. Sci. 33, 1110–1115 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Creekmore, B. C. et al. Mouse intestine microbiome-encoded β-glucuronidases recognized utilizing metagenome evaluation guided by protein construction. mSystems 4, e00452–19 (2019).

  • Gloux, Okay. et al. A metagenomic β-glucuronidase uncovers a core adaptive operate of the human intestinal microbiome. Proc. Natl Acad. Sci. USA 108, 4539–4546 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Begley, M., Gahan, C. G. M. & Hill, C. The interplay between micro organism and bile. FEMS Microbiol. Rev. 29, 625–651 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Stankeviciute, G. et al. Convergent evolution of bacterial ceramide synthesis. Nat. Chem. Biol. 18, 305–312 (2021).

  • Dinoff, A., Herrmann, N. & Lanctôt, Okay. L. Ceramides and despair: a scientific assessment. J. Have an effect on. Disord. 213, 35–43 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dekkers, Okay. F. et al. A web based atlas of human plasma metabolite signatures of intestine microbiome composition. Nat. Commun. 13, 5370 (2022).

  • Zubair, N. et al. Genetic predisposition impacts medical modifications in a life-style teaching program. Sci. Rep. 9, 6805 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, L. et al. A resource-efficient software for combined mannequin affiliation evaluation of large-scale knowledge. Nat. Genet. 51, 1749–1755 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Xu, C. et al. Estimating genome-wide significance for whole-genome sequencing research. Genet. Epidemiol. 38, 281–290 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Callahan, B. J. et al. DADA2: high-resolution pattern inference from Illumina amplicon knowledge. Nat. Strategies 13, 581–583 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Conomos, M. P., Reiner, A. P., Weir, B. S. & Thornton, T. A. Mannequin-free estimation of current genetic relatedness. Am. J. Hum. Genet. 98, 127–148 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Leave a Comment