Lengthy COVID: main findings, mechanisms and suggestions

  • Ballering, A. V., van Zon, S. Ok. R., Hartman, T. C. O. & Rosmalen, J. G. M. Persistence of somatic signs after COVID-19 within the Netherlands: an observational cohort examine. Lancet 400, 452–461 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bull-Otterson, L. Submit–COVID situations amongst grownup COVID-19 survivors aged 18–64 and ≥65 years — United States, March 2020–November 2021. MMWR Morb. Mortal. Wkly Rep. 71, 713 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ceban, F. et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: a scientific overview and meta-analysis. Mind Behav. Immun. 101, 93–135 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Al-Aly, Z., Bowe, B. & Xie, Y. Lengthy COVID after breakthrough SARS-CoV-2 an infection. Nat. Med. (2022).

    Article 

    Google Scholar
     

  • Ayoubkhani, D. et al. Threat of Lengthy Covid in individuals contaminated with SARS-CoV-2 after two doses of a COVID-19 vaccine: community-based, matched cohort examine. Preprint at medRxiv (2022).

  • FAIR Well being. Sufferers Identified with Submit-COVID Circumstances: An Evaluation of Personal Healthcare Claims Utilizing the Official ICD-10 Diagnostic Code (FAIR Well being, 2022).

  • Davis, H. E. et al. Characterizing lengthy COVID in a global cohort: 7 months of signs and their affect. eClinicalMedicine 38, 101019 (2021).

    Article 

    Google Scholar
     

  • Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Lengthy-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Xie, Y. & Al-Aly, Z. Dangers and burdens of incident diabetes in lengthy COVID: a cohort examine. Lancet Diabetes Endocrinol. 10, 311–321 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mancini, D. M. et al. Use of cardiopulmonary stress testing for sufferers with unexplained dyspnea submit–coronavirus illness. JACC Coronary heart Fail. 9, 927–937 (2021).

    Article 

    Google Scholar
     

  • Kedor, C. et al. A potential observational examine of post-COVID-19 power fatigue syndrome following the primary pandemic wave in Germany and biomarkers related to symptom severity. Nat. Commun. 13, 5104 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Larsen, N. W. et al. Characterization of autonomic symptom burden in lengthy COVID: a world survey of 2314 adults. Entrance. Neurol. 13, 1012668 (2022).

    Article 

    Google Scholar
     

  • Demko, Z. O. et al. Submit-acute sequelae of SARS-CoV-2 (PASC) affect high quality of life at 6, 12 and 18 months post-infection. Preprint at medRxiv (2022).

  • Cairns, R. & Hotopf, M. A scientific overview describing the prognosis of power fatigue syndrome. Occup. Med. Oxf. Engl. 55, 20–31 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Bach, Ok. Is ‘lengthy Covid’ worsening the labor scarcity? Brookings (2022).

  • Swank, Z. et al. Persistent circulating extreme acute respiratory syndrome coronavirus 2 spike is related to post-acute coronavirus illness 2019 sequelae. Clin. Infect. Dis. (2022).

    Article 

    Google Scholar
     

  • Proal, A. D. & VanElzakker, M. B. Lengthy COVID or post-acute sequelae of COVID-19 (PASC): an outline of organic components which will contribute to persistent signs. Entrance. Microbiol. 12, 698169 (2021).

    Article 

    Google Scholar
     

  • Klein, J. et al. Distinguishing options of Lengthy COVID recognized by way of immune profiling. Preprint at medRxiv (2022).

  • Glynne, P., Tahmasebi, N., Gant, V. & Gupta, R. Lengthy COVID following delicate SARS-CoV-2 an infection: attribute T cell alterations and response to antihistamines. J. Investig. Med. 70, 61–67 (2022).

    Article 

    Google Scholar
     

  • Phetsouphanh, C. et al. Immunological dysfunction persists for 8 months following preliminary mild-to-moderate SARS-CoV-2 an infection. Nat. Immunol. 23, 210–216 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zubchenko, S., Kril, I., Nadizhko, O., Matsyura, O. & Chopyak, V. Herpesvirus infections and post-COVID-19 manifestations: a pilot observational examine. Rheumatol. Int. (2022).

    Article 

    Google Scholar
     

  • Peluso, M. J. et al. Proof of current Epstein-Barr virus reactivation in people experiencing Lengthy COVID. Preprint at medRxiv (2022).

    Article 

    Google Scholar
     

  • Yeoh, Y. Ok. et al. Intestine microbiota composition displays illness severity and dysfunctional immune responses in sufferers with COVID-19. Intestine 70, 698–706 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Q. et al. Intestine microbiota dynamics in a potential cohort of sufferers with post-acute COVID-19 syndrome. Intestine 71, 544–552 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Mendes de Almeida, V. Intestine microbiota from sufferers with delicate COVID-19 trigger alterations in mice that resemble post-COVID syndrome. Res. Sq. (2022).

    Article 

    Google Scholar
     

  • Wallukat, G. et al. Useful autoantibodies towards G-protein coupled receptors in sufferers with persistent long-COVID-19 signs. J. Transl Autoimmun. 4, 100100 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Su, Y. et al. A number of early components anticipate post-acute COVID-19 sequelae. Cell 185, 881–895.e20 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Arthur, J. M. et al. Improvement of ACE2 autoantibodies after SARS-CoV-2 an infection. PLoS ONE 16, e0257016 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Haffke, M. et al. Endothelial dysfunction and altered endothelial biomarkers in sufferers with post-COVID-19 syndrome and power fatigue syndrome (ME/CFS). J. Transl Med. 20, 138 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Charfeddine, S. Lengthy COVID 19 syndrome: is it associated to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV examine. Entrance. Cardiovasc. Med. (2021).

    Article 

    Google Scholar
     

  • Pretorius, E. et al. Prevalence of signs, comorbidities, fibrin amyloid microclots and platelet pathology in people with Lengthy COVID/post-acute sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 21, 148 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Spudich, S. & Nath, A. Nervous system penalties of COVID-19. Science 375, 267–269 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Renz-Polster, H., Tremblay, M.-E., Bienzle, D. & Fischer, J. E. The pathobiology of myalgic encephalomyelitis/power fatigue syndrome: the case for neuroglial failure. Entrance. Cell. Neurosci. 16, 888232 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Merzon, E. et al. Scientific and socio-demographic variables related to the analysis of lengthy COVID syndrome in youth: a population-based examine. Int. J. Environ. Res. Public Well being 19, 5993 (2022).

    Article 
    CAS 

    Google Scholar
     

  • CDC. Lengthy COVID – family pulse survey – COVID-19. CDC (2022).

  • Williamson, A. E., Tydeman, F., Miners, A., Pyper, Ok. & Martineau, A. R. Quick-term and long-term impacts of COVID-19 on financial vulnerability: a population-based longitudinal examine (COVIDENCE UK). BMJ Open 12, e065083 (2022).

    Article 

    Google Scholar
     

  • Ziauddeen, N. et al. Traits and affect of Lengthy Covid: findings from a web based survey. PLoS ONE 17, e0264331 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Choutka, J., Jansari, V., Hornig, M. & Iwasaki, A. Unexplained post-acute an infection syndromes. Nat. Med. 28, 911–923 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Komaroff, A. L. & Lipkin, W. I. Insights from myalgic encephalomyelitis/power fatigue syndrome could assist unravel the pathogenesis of postacute COVID-19 syndrome. Tendencies Mol. Med. 27, 895–906 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Schultheiß, C. et al. From on-line knowledge assortment to identification of illness mechanisms: the IL-1ß, IL-6 and TNF-α cytokine triad is related to post-acute sequelae of COVID-19 in a digital analysis cohort. SSRN (2021).

    Article 

    Google Scholar
     

  • Peluso, M. J. et al. Markers of immune activation and irritation in people with postacute sequelae of extreme acute respiratory syndrome coronavirus 2 an infection. J. Infect. Dis. 224, 1839–1848 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Fernández-Castañeda, A. et al. Gentle respiratory SARS-CoV-2 an infection could cause multi-lineage mobile dysregulation and myelin loss within the mind. Preprint at bioRxiv (2022).

    Article 

    Google Scholar
     

  • Hornig, M. et al. Distinct plasma immune signatures in ME/CFS are current early in the midst of sickness. Sci. Adv. 1, e1400121 (2015).

    Article 

    Google Scholar
     

  • Wang, E. Y. et al. Various purposeful autoantibodies in sufferers with COVID-19. Nature 595, 283–288 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Shikova, E. et al. Cytomegalovirus, Epstein-Barr virus, and human herpesvirus-6 infections in sufferers with myalgic еncephalomyelitis/power fatigue syndrome. J. Med. Virol. 92, 3682–3688 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Schreiner, P. et al. Human herpesvirus-6 reactivation, mitochondrial fragmentation, and the coordination of antiviral and metabolic phenotypes in myalgic encephalomyelitis/power fatigue syndrome. Immunohorizons 4, 201–215 (2020).

    Article 
    CAS 

    Google Scholar
     

  • García-Abellán, J. et al. Antibody response to SARS-CoV-2 is related to long-term scientific end result in sufferers with COVID-19: a longitudinal examine. J. Clin. Immunol. 41, 1490–1501 (2021).

    Article 

    Google Scholar
     

  • Augustin, M. et al. Submit-COVID syndrome in non-hospitalised sufferers with COVID-19: a longitudinal potential cohort examine. Lancet Reg. Well being Eur. 6, 100122 (2021).

    Article 

    Google Scholar
     

  • Talla, A. et al. Longitudinal immune dynamics of delicate COVID-19 outline signatures of restoration and persistence. Preprint at bioRxiv (2021).

    Article 

    Google Scholar
     

  • Peluso, M. J. et al. Lengthy-term SARS-CoV-2-specific immune and inflammatory responses in people recovering from COVID-19 with and with out post-acute signs. Cell Rep. 36, 109518 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hu, F. et al. A compromised particular humoral immune response towards the SARS-CoV-2 receptor-binding area is expounded to viral persistence and periodic shedding within the gastrointestinal tract. Cell. Mol. Immunol. 17, 1119–1125 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Korte, W. et al. SARS-CoV-2 IgG and IgA antibody response is gender dependent; and IgG antibodies quickly decline early on. J. Infect. 82, e11–e14 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Jo, W. et al. A two-phase, single cohort examine of COVID-19 antibody sera-surveillance. Ann. Epidemiol. Public Well being 4, 1055 (2021).

    Article 

    Google Scholar
     

  • Nomura, Y. et al. Attenuation of antibody titers from 3 to six months after the second dose of the BNT162b2 vaccine depends upon intercourse, with age and smoking threat components for decrease antibody titers at 6 months. Vaccines 9, 1500 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tejerina, F. et al. Submit-COVID-19 syndrome. SARS-CoV-2 RNA detection in plasma, stool, and urine in sufferers with persistent signs after COVID-19. BMC Infect. Dis. 22, 211 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Goh, D. et al. Persistence of residual SARS-CoV-2 viral antigen and RNA in tissues of sufferers with lengthy COVID-19. Preprint at (2022).

  • Ceulemans, L. J. et al. Persistence of SARS-CoV-2 RNA in lung tissue after delicate COVID-19. Lancet Respir. Med. 9, e78–e79 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Menuchin-Lasowski, Y. et al. SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Rep 17, 789–803 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cheung, C. C. L. et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from 5 recovered sufferers with COVID-19. Intestine 71, 226–229 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Natarajan, A. et al. Gastrointestinal signs and fecal shedding of SARS-CoV-2 RNA counsel extended gastrointestinal an infection. Med 3, 371–387.e9 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Katsoularis, I. et al. Dangers of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled circumstances collection and matched cohort examine. BMJ 377, e069590 (2022).

    Article 

    Google Scholar
     

  • Pretorius, E. et al. Persistent clotting protein pathology in Lengthy COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by elevated ranges of antiplasmin. Cardiovasc. Diabetol. 20, 172 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Kubánková, M. et al. Bodily phenotype of blood cells is altered in COVID-19. Biophys. J. 120, 2838–2847 (2021).

    Article 

    Google Scholar
     

  • Osiaevi, I. et al. Persistent capillary rarefication in lengthy COVID syndrome. Angiogenesis (2022).

    Article 

    Google Scholar
     

  • Patel, M. A. et al. Elevated vascular transformation blood biomarkers in long-COVID point out angiogenesis as a key pathophysiological mechanism. Mol. Med. 28, 122 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Puntmann, V. O. et al. Outcomes of cardiovascular magnetic resonance imaging in sufferers not too long ago recovered from coronavirus illness 2019 (COVID-19). JAMA Cardiol 5, 1265–1273 (2020).

    Article 

    Google Scholar
     

  • Roca-Fernández, A. et al. Cardiac impairment in Lengthy Covid 1-year post-SARS-CoV-2 an infection. Eur. Coronary heart J. 43, ehac544.219 (2022).

    Article 

    Google Scholar
     

  • Dennis, A. et al. Multiorgan impairment in low-risk people with post-COVID-19 syndrome: a potential, community-based examine. BMJ Open 11, e048391 (2021).

    Article 

    Google Scholar
     

  • Dennis, A. et al. Multi-organ impairment and Lengthy COVID: a 1-year potential, longitudinal cohort examine. Preprint at medRxiv (2022).

  • Bowe, B., Xie, Y., Xu, E. & Al-Aly, Z. Kidney outcomes in Lengthy COVID. J. Am. Soc. Nephrol. 32, 2851–2862 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Almufarrij, I. & Munro, Ok. J. One yr on: an up to date systematic overview of SARS-CoV-2, COVID-19 and audio-vestibular signs. Int. J. Audiol. 60, 935–945 (2021).

    Article 

    Google Scholar
     

  • Holdsworth, D. A. et al. Complete scientific evaluation identifies particular neurocognitive deficits in working-age sufferers with long-COVID. PLoS ONE 17, e0267392 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Cysique, L. A. et al. Submit-acute COVID-19 cognitive impairment and decline uniquely affiliate with kynurenine pathway activation: a longitudinal observational examine. Preprint at medRxiv (2022).

  • Crivelli, L. et al. Adjustments in cognitive functioning after COVID-19: a scientific overview and meta-analysis. Alzheimers Dement. 18, 1047–1066 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Woo, M. S. et al. Frequent neurocognitive deficits after restoration from delicate COVID-19. Mind Commun. 2, fcaa205 (2020).

    Article 

    Google Scholar
     

  • Taquet, M. et al. Neurological and psychiatric threat trajectories after SARS-CoV-2 an infection: an evaluation of 2-year retrospective cohort research together with 1 284 437 sufferers. Lancet Psychiatry 9, 815–827 (2022).

    Article 

    Google Scholar
     

  • Reiken, S. et al. Alzheimer’s-like signaling in brains of COVID-19 sufferers. Alzheimers Dement. 18, 955–965 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Charnley, M. et al. Neurotoxic amyloidogenic peptides within the proteome of SARS-COV2: potential implications for neurological signs in COVID-19. Nat. Commun. 13, 3387 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Visser, D. et al. Lengthy COVID is related to intensive in-vivo neuroinflammation on [18F]DPA-714 PET. Preprint at medRxiv (2022).

  • Guedj, E. et al. 18F-FDG mind PET hypometabolism in sufferers with lengthy COVID. Eur. J. Nucl. Med. Mol. Imaging 48, 2823–2833 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Hugon, J. et al. Cognitive decline and brainstem hypometabolism in lengthy COVID: a case collection. Mind Behav. 12, e2513 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Apple, A. C. et al. Threat components and irregular cerebrospinal fluid affiliate with cognitive signs after delicate COVID-19. Ann. Clin. Transl Neurol. 9, 221–226 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Douaud, G. et al. SARS-CoV-2 is related to modifications in mind construction in UK Biobank. Nature 604, 697–707 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Peluso, M. J. et al. SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19. Ann. Neurol. 91, 772–781 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Villaume, W. A. Marginal BH4 deficiencies, iNOS, and self-perpetuating oxidative stress in post-acute sequelae of Covid-19. Med. Hypotheses 163, 110842 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Bitirgen, G. et al. Corneal confocal microscopy identifies corneal nerve fibre loss and elevated dendritic cells in sufferers with lengthy COVID. Br. J. Ophthalmol. (2021).

    Article 

    Google Scholar
     

  • Barros, A. et al. Small fiber neuropathy within the cornea of Covid-19 sufferers related to the technology of ocular floor illness. Ocul. Surf. 23, 40–48 (2022).

    Article 

    Google Scholar
     

  • Bitirgen, G. et al. Irregular quantitative pupillary gentle responses following COVID-19. Int. Ophthalmol. (2022).

    Article 

    Google Scholar
     

  • Mardin, C. Y. et al. Potential affect of purposeful energetic GPCR-autoantibodies on retinal microcirculation in long-COVID. Make investments. Ophthalmol. Vis. Sci. 63, 3315–F0124 (2022).


    Google Scholar
     

  • Zhang, B.-Z. et al. SARS-CoV-2 infects human neural progenitor cells and mind organoids. Cell Res. 30, 928–931 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Sen, S. et al. Retinal manifestations in sufferers with SARS-CoV-2 an infection and pathogenetic implications: a scientific overview. Int. Ophthalmol. 42, 323–336 (2022).

    Article 

    Google Scholar
     

  • Frere, J. J. et al. SARS-CoV-2 an infection in hamsters and people ends in lasting and distinctive systemic perturbations submit restoration. Sci. Transl Med. 14, eabq3059 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Rutkai, I. et al. Neuropathology and virus in mind of SARS-CoV-2 contaminated non-human primates. Nat. Commun. 13, 1745 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Committee on the Diagnostic Standards for Myalgic Encephalomyelitis/Power Fatigue Syndrome, Board on the Well being of Choose Populations, & Institute of Drugs. Past Myalgic Encephalomyelitis/Power Fatigue Syndrome: Redefining an Sickness (Nationwide Academies Press, 2015).

  • Bateman, L. et al. Myalgic encephalomyelitis/power fatigue syndrome: necessities of analysis and administration. Mayo Clin. Proc. 96, 2861–2878 (2021).

    Article 

    Google Scholar
     

  • The ME Affiliation. Index of ME/CFS revealed analysis – Nov 2022. 224 Index of ME/CFS Printed Analysis. The ME Affiliation (2022).

  • Seltzer, J. & Thomas, J. ME Analysis Abstract 2019 (The ME Affiliation, 2019).

  • Wong, T. L. & Weitzer, D. J. Lengthy COVID and myalgic encephalomyelitis/power fatigue syndrome (ME/CFS)-a systemic overview and comparability of scientific presentation and symptomatology. Med. (Kaunas.) 57, 418 (2021).


    Google Scholar
     

  • Twomey, R. et al. Power fatigue and postexertional malaise in individuals residing with Lengthy COVID: an observational examine. Phys. Ther. 102, pzac005 (2022).

    Article 

    Google Scholar
     

  • Vernon, S. D. et al. Orthostatic problem causes distinctive symptomatic, hemodynamic and cognitive responses in Lengthy COVID and myalgic encephalomyelitis/power fatigue syndrome. Entrance. Med. 9, 917019 (2022).

    Article 

    Google Scholar
     

  • Lam, M. H.-B. et al. Psychological morbidities and power fatigue in extreme acute respiratory syndrome survivors: long-term follow-up. Arch. Intern. Med. 169, 2142–2147 (2009).

    Article 

    Google Scholar
     

  • Keller, B. A., Pryor, J. L. & Giloteaux, L. Incapacity of myalgic encephalomyelitis/power fatigue syndrome sufferers to breed VO2peak signifies purposeful impairment. J. Transl Med. 12, 104 (2014).

    Article 

    Google Scholar
     

  • Saha, A. Ok. et al. Erythrocyte deformability as a possible biomarker for power fatigue syndrome. Blood 132, 4874 (2018).

    Article 

    Google Scholar
     

  • Díaz-Resendiz, Ok. J. G. et al. Lack of mitochondrial membrane potential (ΔΨm) in leucocytes as post-COVID-19 sequelae. J. Leukoc. Biol. 112, 23–29 (2022).

    Article 

    Google Scholar
     

  • Pozzi, A. COVID-19 and mitochondrial non-coding RNAs: new insights from revealed knowledge. Entrance. Physiol. 12, 805005 (2022).

    Article 

    Google Scholar
     

  • Guntur, V. P. et al. Signatures of mitochondrial dysfunction and impaired fatty acid metabolism in plasma of sufferers with post-acute sequelae of COVID-19 (PASC). Metabolites 12, 1026 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Paul, B. D., Lemle, M. D., Komaroff, A. L. & Snyder, S. H. Redox imbalance hyperlinks COVID-19 and myalgic encephalomyelitis/power fatigue syndrome. Proc. Natl Acad. Sci. USA 118, e2024358118 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Wright, J., Astill, S. L. & Sivan, M. The connection between bodily exercise and Lengthy COVID: a cross-sectional examine. Int. J. Environ. Res. Public Well being 19, 5093 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Heerdt, P. M., Shelley, B. & Singh, I. Impaired systemic oxygen extraction lengthy after delicate COVID-19: potential perioperative implications. Br. J. Anaesth. 128, e246–e249 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Novak, P. et al. Multisystem involvement in post-acute sequelae of coronavirus illness 19. Ann. Neurol. 91, 367–379 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Holmes, E. et al. Incomplete systemic restoration and metabolic phenoreversion in post-acute-phase nonhospitalized COVID-19 sufferers: implications for evaluation of post-acute COVID-19 syndrome. J. Proteome Res. 20, 3315–3329 (2021).

    Article 
    CAS 

    Google Scholar
     

  • van Campen, C. L. M. C. & Visser, F. C. Orthostatic intolerance in long-haul COVID after SARS-CoV-2: a case-control comparability with post-EBV and insidious-onset myalgic encephalomyelitis/power fatigue syndrome sufferers. Healthcare 10, 2058 (2022).

    Article 

    Google Scholar
     

  • van Campen, C. L. M. C. & Visser, F. C. Lengthy-Haul COVID sufferers: prevalence of POTS are lowered however cerebral blood movement abnormalities stay irregular with longer illness period. Healthcare 10, 2105 (2022).

    Article 

    Google Scholar
     

  • Nunes, J. M., Kruger, A., Proal, A., Kell, D. B. & Pretorius, E. The prevalence of hyperactivated platelets and fibrinaloid microclots in myalgic encephalomyelitis/power fatigue syndrome (ME/CFS). Prescription drugs 15, 931 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Hoad, A., Spickett, G., Elliott, J. & Newton, J. Postural orthostatic tachycardia syndrome is an under-recognized situation in power fatigue syndrome. QJM 101, 961–965 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Shaw, B. H. et al. The face of postural tachycardia syndrome – insights from a big cross‐sectional on-line group‐primarily based survey. J. Intern. Med. 286, 438–448 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Raj, S. R. et al. Postural orthostatic tachycardia syndrome (POTS): priorities for POTS care and analysis from a 2019 Nationwide Institutes of Well being knowledgeable consensus assembly – half 2. Auton. Neurosci. Fundamental. Clin. 235, 102836 (2021).

    Article 

    Google Scholar
     

  • Oaklander, A. L. et al. Peripheral neuropathy evaluations of sufferers with extended Lengthy COVID. Neurol. Neuroimmunol. Neuroinflamm. 9, e1146 (2022).

    Article 

    Google Scholar
     

  • Larsen, N. W. et al. Characterization of autonomic symptom burden in lengthy COVID: a world survey of two,314 adults. Entrance. Neurol. 13, 1012668 (2022).

    Article 

    Google Scholar
     

  • Weinstock, L. B. et al. Mast cell activation signs are prevalent in Lengthy-COVID. Int. J. Infect. Dis. 112, 217–226 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Boneva, R. S. et al. Endometriosis as a comorbid situation in power fatigue syndrome (CFS): secondary evaluation of information from a CFS case-control examine. Entrance. Pediatr. 7, 195 (2019).

    Article 

    Google Scholar
     

  • Bragée, B. et al. Indicators of intracranial hypertension, hypermobility, and craniocervical obstructions in sufferers with myalgic encephalomyelitis/power fatigue syndrome. Entrance. Neurol. 11, (2020).

  • Medina-Perucha, L. et al. Self-reported menstrual alterations throughout the COVID-19 syndemic in Spain: a cross-sectional examine. Int. J. Womens Well being 14, 529–544 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Ding, T. et al. Evaluation of ovarian harm related to COVID-19 illness in reproductive-aged ladies in Wuhan, China: an observational examine. Entrance. Med. 8, 635255 (2021).

    Article 

    Google Scholar
     

  • Sharp, G. C. et al. The COVID-19 pandemic and the menstrual cycle: analysis gaps and alternatives. Int. J. Epidemiol. (2021).

    Article 

    Google Scholar
     

  • Khan, S. M. et al. SARS-CoV-2 an infection and subsequent modifications within the menstrual cycle amongst members within the Arizona CoVHORT examine. Am. J. Obstet. Gynecol. 226, 270–273 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Harlow, B. L., Signorello, L. B., Corridor, J. E., Dailey, C. & Komaroff, A. L. Reproductive correlates of power fatigue syndrome. Am. J. Med. 105, 94S–99S (1998).

    Article 
    CAS 

    Google Scholar
     

  • Thomas, N., Gurvich, C., Huang, Ok., Gooley, P. R. & Armstrong, C. W. The underlying intercourse variations in neuroendocrine diversifications related to myalgic encephalomyelitis power fatigue syndrome. Entrance. Neuroendocrinol. 66, 100995 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Boneva, R. S., Lin, J.-M. S. & Unger, E. R. Early menopause and different gynecologic threat indicators for power fatigue syndrome in ladies. Menopause 22, 826–834 (2015).

    Article 

    Google Scholar
     

  • Kresch, E. et al. COVID-19 endothelial dysfunction could cause erectile dysfunction: histopathological, immunohistochemical, and ultrastructural examine of the human penis. World J. Mens Well being 39, 466–469 (2021).

    Article 

    Google Scholar
     

  • Maleki, B. H. & Tartibian, B. COVID-19 and male reproductive perform: a potential, longitudinal cohort examine. Copy 161, 319–331 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yu, J. Z. et al. Lung perfusion disturbances in nonhospitalized post-COVID with dyspnea — a magnetic resonance imaging feasibility examine. J. Intern. Med. 292, 941–956 (2022).

    Article 

    Google Scholar
     

  • Cho, J. L. et al. Quantitative chest CT evaluation of small airways illness in post-acute SARS-CoV-2 an infection. Radiology 304, 185–192 (2022).

    Article 

    Google Scholar
     

  • Vijayakumar, B. et al. Immuno-proteomic profiling reveals aberrant immune cell regulation within the airways of people with ongoing post-COVID-19 respiratory illness. Immunity 55, 542–556.e5 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Littlefield, Ok. M. et al. SARS-CoV-2-specific T cells affiliate with irritation and lowered lung perform in pulmonary post-acute sequalae of SARS-CoV-2. PLOS Pathog. 18, e1010359 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Meringer, H. & Mehandru, S. Gastrointestinal post-acute COVID-19 syndrome. Nat. Rev. Gastroenterol. Hepatol. 19, 345–346 (2022).

    Article 
    CAS 

    Google Scholar
     

  • König, R. S. et al. The intestine microbiome in myalgic encephalomyelitis (ME)/power fatigue syndrome (CFS). Entrance. Immunol. 12, 628741 (2022).

    Article 

    Google Scholar
     

  • Zuo, T. et al. Depicting SARS-CoV-2 faecal viral exercise in affiliation with intestine microbiota composition in sufferers with COVID-19. Intestine 70, 276–284 (2021).

    CAS 

    Google Scholar
     

  • Zollner, A. et al. Postacute COVID-19 is characterised by intestine viral antigen persistence in inflammatory bowel illnesses. Gastroenterology 163, 495–506.e8 (2022).


    Google Scholar
     

  • Giron, L. B. et al. Markers of fungal translocation are elevated throughout post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling. JCI Perception (2022).

  • Jason, L. A. et al. COVID-19 signs over time: evaluating long-haulers to ME/CFS. Fatigue Biomed. Well being Behav. 9, 59–68 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Tran, V.-T., Porcher, R., Pane, I. & Ravaud, P. Course of submit COVID-19 illness signs over time within the ComPaRe lengthy COVID potential e-cohort. Nat. Commun. 13, 1812 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Walker, A., Kelly, C., Pottinger, G. & Hopkins, C. Parosmia — a standard consequence of covid-19. BMJ 377, e069860 (2022).

    Article 

    Google Scholar
     

  • Jamal, S. M. et al. Potential analysis of autonomic dysfunction in post-acute sequela of COVID-19. J. Am. Coll. Cardiol. 79, 2325–2330 (2022).

    Article 

    Google Scholar
     

  • Stavileci, B., Özdemir, E., Özdemir, B., Ereren, E. & Cengiz, M. De-novo improvement of fragmented QRS throughout a six-month follow-up interval in sufferers with COVID-19 illness and its cardiac results. J. Electrocardiol. 72, 44–48 (2022).

    Article 

    Google Scholar
     

  • Grist, J. T. et al. Lung abnormalities depicted with hyperpolarized 129Xe MRI in sufferers with lengthy COVID. Radiology 305, 709–717 (2022).

    Article 

    Google Scholar
     

  • US ME/CFS Clinician Coalition. Testing Suggestions for Suspected ME/CFS (US ME/CFS Clinician Coalition, 2021).

  • Galán, M. et al. Persistent overactive cytotoxic immune response in a Spanish cohort of people with long-COVID: identification of diagnostic biomarkers. Entrance. Immunol. 13, 848886 (2022).

    Article 

    Google Scholar
     

  • Grandjean, D. et al. Screening for SARS-CoV-2 persistence in Lengthy COVID sufferers utilizing sniffer canine and smells from axillary sweats samples. Clin. Trials 12, 2 (2022).


    Google Scholar
     

  • Pifarré, F. et al. Using oxygen as a attainable screening biomarker for the analysis of power fatigue. Apunt. Sports activities Med 57, 100379 (2022).

    Article 

    Google Scholar
     

  • Jason, L. A., Kalns, J., Richarte, A., Katz, B. Z. & Torres, C. Saliva fatigue biomarker index as a marker for extreme myalgic encephalomyelitis/power fatigue syndrome in a group primarily based pattern. Fatigue Biomed. Well being Behav. 9, 189–195 (2021).

    Article 

    Google Scholar
     

  • Esfandyarpour, R., Kashi, A., Nemat-Gorgani, M., Wilhelmy, J. & Davis, R. W. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/power fatigue syndrome (ME/CFS). Proc. Natl Acad. Sci. USA 116, 10250–10257 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Nkiliza, A. et al. Intercourse-specific plasma lipid profiles of ME/CFS sufferers and their affiliation with ache, fatigue, and cognitive signs. J. Transl Med. 19, 370 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Bolton, M. J., Chapman, B. P. & Van Marwijk, H. Low-dose naltrexone as a therapy for power fatigue syndrome. BMJ Case Rep. 13, e232502 (2020).

    Article 

    Google Scholar
     

  • Pitt, B., Tate, A. M., Gluck, D., Rosenson, R. S. & Goonewardena, S. N. Repurposing low-dose naltrexone (LDN) for the prevention and therapy of immunothrombosis in COVID-19. Eur. Coronary heart J. Cardiovasc. Pharmacother. (2022).

    Article 

    Google Scholar
     

  • Alper, Ok. Case report: famotidine for neuropsychiatric signs in COVID-19. Entrance. Med. 7, 614393 (2020).

    Article 

    Google Scholar
     

  • Hohberger, B. et al. Case report: neutralization of autoantibodies focusing on G-protein-coupled receptors improves capillary impairment and fatigue signs after COVID-19 an infection. Entrance. Med. 8, 754667 (2021).

    Article 

    Google Scholar
     

  • Wang, C. et al. Lengthy COVID: the character of thrombotic sequelae determines the need of early anticoagulation. Entrance. Cell. Infect. Microbiol. 12, 861703 (2022).

    Article 
    CAS 

    Google Scholar
     

  • The ME Affiliation. A brand new therapy for Lengthy Covid? The ME Affiliation 2021/10/a-new-treatment-for-long-covid/ (2021).

  • Tölle, M. et al. Myalgic encephalomyelitis/power fatigue syndrome: efficacy of repeat immunoadsorption. J. Clin. Med. 9, E2443 (2020).

    Article 

    Google Scholar
     

  • Wooden, E., Corridor, Ok. H. & Tate, W. Position of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/power fatigue syndrome: a attainable method to SARS-CoV-2 ‘long-haulers’? Power Dis. Transl Med. 7, 14–26 (2020).


    Google Scholar
     

  • NICE. Myalgic encephalomyelitis (or encephalopathy)/power fatigue syndrome: analysis and administration. NICE (2021).

  • World Well being Group. Assist for Rehabilitation Self-Administration After COVID-19 Associated Sickness (WHO, 2021).

  • CDC. Remedy of ME/CFS | Myalgic encephalomyelitis/power fatigue syndrome (ME/CFS). CDC (2021).

  • Lengthy COVID Physio. Train. Lengthy COVID Physio (2022).

  • Geng, L. N., Bonilla, H. F., Shafer, R. W., Miglis, M. G. & Yang, P. C. Case report of breakthrough lengthy COVID and using nirmatrelvir-ritonavir. Preprint at (2022).

  • Xie, Y., Choi, T. & Al-Aly, Z. Nirmatrelvir and the danger of post-acute sequelae of COVID-19. Preprint at medRxiv (2022).

  • Charfeddine, S. et al. Sulodexide within the therapy of sufferers with lengthy COVID 19 signs and endothelial dysfunction: the outcomes of TUN-EndCOV examine. Arch. Cardiovasc. Dis. Suppl. 14, 127 (2022).


    Google Scholar
     

  • Thomas, R. et al. A randomised, double-blind, placebo-controlled trial evaluating concentrated phytochemical-rich dietary capsule along with a probiotic capsule on scientific outcomes amongst people with COVID-19 — the UK Phyto-V examine. COVID 2, 433–449 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Zhang, L. et al. Intestine microbiota-derived synbiotic components (SIM01) as a novel adjuvant remedy for COVID-19: an open-label pilot examine. J. Gastroenterol. Hepatol. 37, 823–831 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Liu, L. D. & Duricka, D. L. Stellate ganglion block reduces signs of Lengthy COVID: a case collection. J. Neuroimmunol. 362, 577784 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Belcaro, G. et al. Preventive results of Pycnogenol® on cardiovascular threat components (together with endothelial perform) and microcirculation in topics recovering from coronavirus illness 2019 (COVID-19). Minerva Med. 113, 300–308 (2022).

    Article 

    Google Scholar
     

  • Crooks, V., Waller, S., Smith, T. & Hahn, T. J. Using the Karnofsky Efficiency Scale in figuring out outcomes and threat in geriatric outpatients. J. Gerontol. 46, M139–M144 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Ledford, H. Lengthy-COVID remedies: why the world remains to be ready. Nature 608, 258–260 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Toogood, P. L., Clauw, D. J., Phadke, S. & Hoffman, D. Myalgic encephalomyelitis/power fatigue syndrome (ME/CFS): the place will the medicine come from? Pharmacol. Res. 165, 105465 (2021).

    Article 
    CAS 

    Google Scholar
     

  • US ME/CFS Clinician Coalition. ME/CFS Remedy Suggestions (US ME/CFS Clinician Coalition, 2021).

  • Taquet, M., Dercon, Q. & Harrison, P. J. Six-month sequelae of post-vaccination SARS-CoV-2 an infection: a retrospective cohort examine of 10,024 breakthrough infections. Mind Behav. Immun. 103, 154–162 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Workplace for Nationwide Statistics. Self-reported lengthy COVID after an infection with the Omicron variant within the UK: 6 Could 2022. Workplace for Nationwide Statistics (2022).

  • Tsuchida, T. et al. Relationship between modifications in signs and antibody titers after a single vaccination in sufferers with Lengthy COVID. J. Med. Virol. 94, 3416–3420 (2022).

    Article 
    CAS 

    Google Scholar
     

  • VA COVID-19 Observational Analysis Collaboratory. Burden of PCR-confirmed SARS-CoV-2 reinfection within the U.S. Veterans Administration, March 2020 – January 2022. Preprint at medRxiv (2022).

  • Bowe, B., Xie, Y. & Al-Aly, Z. Acute and postacute sequelae related to SARS-CoV-2 reinfection. Nat. Med. (2022).

  • Blomberg, J., Gottfries, C.-G., Elfaitouri, A., Rizwan, M. & Rosén, A. An infection elicited autoimmunity and myalgic encephalomyelitis/power fatigue syndrome: an explanatory mannequin. Entrance. Immunol. 9, 229 (2018).

    Article 

    Google Scholar
     

  • Cauchemez, S. & Bosetti, P. A reconstruction of early cryptic COVID unfold. Nature 600, 40–41 (2021).

    Article 
    CAS 

    Google Scholar
     

  • CDC. Estimated COVID-19 burden. Facilities for Illness Management and Prevention (2020).

  • Kucirka, L. M., Lauer, S. A., Laeyendecker, O., Boon, D. & Lessler, J. Variation in false-negative charge of reverse transcriptase polymerase chain response–primarily based SARS-CoV-2 checks by time since publicity. Ann. Intern. Med. 173, 262–267 (2020).

    Article 

    Google Scholar
     

  • Levine-Tiefenbrun, M. et al. SARS-CoV-2 RT-qPCR take a look at detection charges are related to affected person age, intercourse, and time since analysis. J. Mol. Diagn. 24, 112–119 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Jarvis, Ok. F. & Kelley, J. B. Temporal dynamics of viral load and false damaging charge affect the degrees of testing essential to fight COVID-19 unfold. Sci. Rep. 11, 9221 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Dattner, I. et al. The position of kids within the unfold of COVID-19: utilizing family knowledge from Bnei Brak, Israel, to estimate the relative susceptibility and infectivity of kids. PLoS Comput. Biol. 17, e1008559 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Langeland, N. & Cox, R. J. Are low SARS-CoV-2 viral hundreds in contaminated kids missed by RT-PCR testing? Lancet Reg. Well being Eur. 5, 100138 (2021).

    Article 

    Google Scholar
     

  • Van Elslande, J. et al. Longitudinal follow-up of IgG anti-nucleocapsid antibodies in SARS-CoV-2 contaminated sufferers as much as eight months after an infection. J. Clin. Virol. 136, 104765 (2021).

    Article 

    Google Scholar
     

  • Liu, W. et al. Predictors of nonseroconversion after SARS-CoV-2 an infection. Emerg. Infect. Dis. 27, 2454–2458 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Toh, Z. Q. et al. Comparability of seroconversion in kids and adults with delicate COVID-19. JAMA Netw. Open 5, e221313 (2022).


    Google Scholar
     

  • Peterson, T. M., Peterson, T. W., Emerson, S., Meredyth, A. Evans, E. R. & Jason, L. A. Protection of CFS inside U.S. medical colleges. Univers. J. Public Well being 1, 177–179 (2013).

    Article 

    Google Scholar
     

  • Rowe, P. C. et al. Orthostatic intolerance and power fatigue syndrome related to Ehlers-Danlos syndrome. J. Pediatr. 135, 494–499 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Nguyen, T. et al. Novel characterisation of mast cell phenotypes from peripheral blood mononuclear cells in power fatigue syndrome/myalgic encephalomyelitis sufferers. Asian Pac. J. Allergy Immunol. 35, 75–81 (2017).

    CAS 

    Google Scholar
     

  • Wagner, C., Isenmann, S., Ringendahl, H. & Haensch, C.-A. Anxiousness in sufferers with postural tachycardia syndrome (POTS). Fortschr. Neurol. Psychiatr. 80, 458–462 (2012).

    CAS 

    Google Scholar
     

  • Grayson, D. A., Mackinnon, A., Jorm, A. F., Creasey, H. & Broe, G. A. Merchandise bias within the middle for epidemiologic research melancholy scale: results of bodily problems and incapacity in an aged group pattern. J. Gerontol. Ser. B 55, P273–P282 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Twisk, F. N. M. & Maes, M. A overview on cognitive behavorial remedy (CBT) and graded train remedy (GET) in myalgic encephalomyelitis (ME) / power fatigue syndrome (CFS): CBT/GET will not be solely ineffective and never evidence-based, but additionally doubtlessly dangerous for a lot of sufferers with ME/CFS. Neuro Endocrinol. Lett. 30, 284–299 (2009).


    Google Scholar
     

  • Vink, M. & Vink-Niese, F. Is it helpful to query the restoration behaviour of sufferers with ME/CFS or Lengthy COVID? Healthcare 10, 392 (2022).

    Article 

    Google Scholar
     

  • Dysautonomia Worldwide. What’s dysautonomia? Dysautonomia Worldwide (2022).

  • CDC. Epidemiology | Presentation and scientific course | Healthcare suppliers | Myalgic encephalomyelitis/power fatigue syndrome (ME/CFS). CDC (2021).

  • Sørensen, A. I. V. et al. A nationwide questionnaire examine of post-acute signs and well being issues after SARS-CoV-2 an infection in Denmark. Nat. Commun. 13, 4213 (2022).

    Article 

    Google Scholar
     

  • Berg, S. Ok. et al. Lengthy COVID signs in SARS-CoV-2-positive kids aged 0–14 years and matched controls in Denmark (LongCOVIDKidsDK): a nationwide, cross-sectional examine. Lancet Little one Adolesc. Well being 6, 614–623 (2022).

    Article 

    Google Scholar
     

  • Morrow, A. Ok. et al. Lengthy-term COVID 19 sequelae in adolescents: the overlap with orthostatic intolerance and ME/CFS. Curr. Pediatr. Rep. 10, 31–44 (2022).

    Article 

    Google Scholar
     

  • Cooper, S. et al. Lengthy COVID-19 liver manifestation in kids. J. Pediatr. Gastroenterol. Nutr. (2022).

    Article 

    Google Scholar
     

  • Kompaniyets, L. Submit–COVID-19 signs and situations amongst kids and adolescents — United States, March 1, 2020–January 31, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 993–999 (2022).

    Article 

    Google Scholar
     

  • Edlow, A. G., Castro, V. M., Shook, L. L., Kaimal, A. J. & Perlis, R. H. Neurodevelopmental outcomes at 1 yr in infants of moms who examined optimistic for SARS-CoV-2 throughout being pregnant. JAMA Netw. Open 5, e2215787 (2022).

    Article 

    Google Scholar
     

  • Morand, A. et al. Related patterns of [18F]-FDG mind PET hypometabolism in paediatric and grownup sufferers with lengthy COVID: a paediatric case collection. Eur. J. Nucl. Med. Mol. Imaging 49, 913–920 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Heiss, R. et al. Pulmonary dysfunction after pediatric COVID-19. Radiology (2022).

    Article 

    Google Scholar
     

  • Leave a Comment