Proteomics of fibrin amyloid microclots in lengthy COVID/post-acute sequelae of COVID-19 (PASC) exhibits many entrapped pro-inflammatory molecules that will additionally contribute to a failed fibrinolytic system | Cardiovascular Diabetology

  • Pretorius E, Vlok M, Venter C, Bezuidenhout JA, Laubscher GJ, Steenkamp J, Kell DB. Persistent clotting protein pathology in lengthy COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by elevated ranges of antiplasmin. Cardiovasc Diabetol. 2021;20(1):172.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Proal AD, VanElzakker MB. Lengthy COVID or post-acute sequelae of COVID-19 (PASC): an outline of 1 organic elements that will contribute to persistent signs. Entrance Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.698169.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deer RR, Rock MA, Vasilevsky N, Carmody L, Rando H, Anzalone AJ, Basson MD, Bennett TD, Bergquist T, Boudreau EA, et al. Characterizing lengthy COVID: deep phenotype of a fancy situation. EBioMedicine. 2021;74: 103722.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Davis HE, Assaf GS, McCorkell L, Wei H, Low RJ, Re’em Y, Redfield S, Austin JP, Akrami A. Characterizing lengthy COVID in a world cohort: 7 months of signs and their influence. EClinicalMedicine. 2021;38: 101019.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the useful receptor for SARS coronavirus. A primary step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yang D, Han Z, Oppenheim JJ. Alarmins and immunity. Immunol Rev. 2017;280(1):41–56.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Giani M, Seminati D, Lucchini A, Foti G, Pagni F. Exuberant plasmocytosis in bronchoalveolar lavage specimen of the primary affected person requiring extracorporeal membrane oxygenation for SARS-CoV-2 in Europe. J Thorac Oncol. 2020;15(5):e65–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Monteleone G, Sarzi-Puttini PC, Ardizzone S. Stopping COVID-19-induced pneumonia with anticytokine remedy. Lancet Rheumatol. 2020;2(5):e255–6.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Ciceri F, Beretta L, Scandroglio AM, Colombo S, Landoni G, Ruggeri A, Peccatori J, D’Angelo A, De Cobelli F, Rovere-Querini P, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory misery syndrome working speculation. Crit Care Resusc. 2020;22(2):95–7.

    PubMed 

    Google Scholar
     

  • Higgins V, Sohaei D, Diamandis EP, Prassas I. COVID-19: from an acute to power illness? Potential long-term well being penalties. Crit Rev Clin Lab Sci. 2021;58(5):297–310.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Grobler C, Maphumulo SC, Grobbelaar LM, Bredenkamp JC, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Covid-19: the rollercoaster of fibrin(Ogen), D-Dimer, Von Willebrand Issue, P-selectin and their interactions with endothelial cells, platelets and erythrocytes. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21145168.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pretorius E, Venter C, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB. Prevalence of readily detected amyloid blood clots in “unclotted” Kind 2 Diabetes Mellitus and COVID-19 plasma: a preliminary report. Cardiovasc Diabetol. 2020;19(1):193.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Venter C, Bezuidenhout JA, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. Erythrocyte, platelet, serum ferritin, and P-selectin pathophysiology implicated in extreme hypercoagulation and vascular problems in COVID-19. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21218234.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Görlinger Okay, Levy JH. COVID-19–related coagulopathy: much less fibrinolysis could be extra dangerous! Anesthesiology. 2021;134(3):366–9.

    PubMed 
    Article 

    Google Scholar
     

  • Libby P, Lüscher T. COVID-19 is, ultimately, an endothelial illness. Eur Coronary heart J. 2020;41(32):3038–44.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wool GD, Miller JL. The influence of COVID-19 illness on platelets and coagulation. Pathobiology. 2021;88(1):15–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laubscher GJ, Lourens PJ, Venter C, Kell DB, Pretorius E. TEG®, microclot and platelet mapping for guiding early administration of extreme COVID-19 coagulopathy. J Clin Med. 2021. https://doi.org/10.3390/jcm10225381.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kell DB, Pretorius E. Proteins behaving badly. Substoichiometric molecular management and amplification of the initiation and nature of amyloid fibril formation: classes from and for blood clotting. Prog Biophys Mol Biol. 2017;123:16–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Willyard C. Might tiny blood clots trigger lengthy COVID’s puzzling signs? Nature. 2022;608(7924):662–4.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wallukat G, Hohberger B, Wenzel Okay, Fürst J, Schulze-Rothe S, Wallukat A, Hönicke AS, Müller J. Useful autoantibodies in opposition to G-protein coupled receptors in sufferers with persistent long-COVID-19 signs. J Transl Autoimmun. 2021;4: 100100.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • NewsCAP: Autoantibody reactivity implicated in ‘lengthy’ COVID-19. Am J Nurs 2021, 121(3):17.

  • Bertin D, Kaphan E, Weber S, Babacci B, Arcani R, Faucher B, Ménard A, Brodovitch A, Mege JL, Bardin N. Persistent IgG anticardiolipin autoantibodies are related to post-COVID syndrome. Int J Infect Dis. 2021;113:23–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • https://property.thermofisher.com/TFS-Property/CMD/manuals/Man-4820-4103-UltiMate-3000-RSLCnano-Man48204103-EN.pdf.

  • https://property.thermofisher.com/TFS-Property/CMD/manuals/man-80000-97027-orbitrap-tribridseries-hardware-man8000097027-en.pdf.

  • Barsnes H, Vaudel M. SearchGUI: a extremely adaptable frequent interface for proteomics search and de novo engines. J Proteome Res. 2018;17(7):2552–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rigden DJ, Fernández XM. The twenty seventh annual nucleic acids analysis database concern and molecular biology database assortment. Nucleic Acids Res. 2020;48(D1):D1-d8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Web page MJ, Thomson GJA, Nunes JM, Engelbrecht AM, Nell TA, de Villiers WJS, de Beer MC, Engelbrecht L, Kell DB, Pretorius E. Serum amyloid A binds to fibrin(ogen), selling fibrin amyloid formation. Sci Rep. 2019;9(1):3102.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pretorius E, Mbotwe S, Kell DB. Lipopolysaccharide-binding protein (LBP) reverses the amyloid state of fibrin seen in plasma of kind 2 diabetics with cardiovascular co-morbidities. Sci Rep. 2017;7(1):9680.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Pretorius E, Web page MJ, Engelbrecht L, Ellis GC, Kell DB. Substantial fibrin amyloidogenesis in kind 2 diabetes assessed utilizing amyloid-selective fluorescent stains. Cardiovasc Diabetol. 2017;16(1):141.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Pretorius E, Mbotwe S, Bester J, Robinson CJ, Kell DB. Acute induction of anomalous and amyloidogenic blood clotting by molecular amplification of extremely substoichiometric ranges of bacterial lipopolysaccharide. J R Soc Interface. 2016. https://doi.org/10.1098/rsif.2016.0539.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • WHO. A minimal frequent end result measure set for COVID-19 scientific analysis. Lancet Infect Dis. 2020; 20(8):e192–e197.

  • Stamatopoulos Okay, Belessi C, Hadzidimitriou A, Smilevska T, Kalagiakou E, Hatzi Okay, Stavroyianni N, Athanasiadou A, Tsompanakou A, Papadaki T, et al. Immunoglobulin gentle chain repertoire in power lymphocytic leukemia. Blood. 2005;106(10):3575–83.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kobayashi R, Rassenti LZ, Meisenholder G, Carson DA, Kipps TJ. Autoantigen inhibits apoptosis of a human B cell leukemia that produces pathogenic rheumatoid issue. J Immunol. 1993;151(12):7273–83.

    CAS 
    PubMed 

    Google Scholar
     

  • Pretorius E, Venter C, Laubscher GJ, Kotze MJ, Oladejo SO, Watson LR, Rajaratnam Okay, Watson BW, Kell
    DB. Prevalence of signs, comorbidities, fibrin amyloid microclots and platelet pathology in people with
    Lengthy COVID/Put up-Acute Sequelae of COVID-19 (PASC). Cardiovasc Diabetol. 2022;21(1):148. https://doi.org/10.1186/s12933-022-01579-5. PMID: 35933347; PMCID: PMC9356426.

  • Kell DB, Laubscher GJ, Pretorius E. A central position for amyloid fibrin microclots in lengthy COVID/PASC: origins and therapeutic implications. Biochem J. 2022;479(4):537–59.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mukherjee A, Morales-Scheihing D, Butler PC, Soto C. Kind 2 diabetes as a protein misfolding illness. Tendencies Mol Med. 2015;21(7):439–49.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sudre CH, Murray B, Varsavsky T, Graham MS, Penfold RS, Bowyer RC, Pujol JC, Klaser Okay, Antonelli M, Canas LS, et al. Attributes and predictors of lengthy COVID. Nat Med. 2021;27(4):626–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fernández-de-Las-Peñas C, Guijarro C, Torres-Macho J, Velasco-Arribas M, Plaza-Canteli S, Hernández-Barrera V, Arias-Navalón JA. Diabetes and the danger of long-term post-COVID signs. Diabetes. 2021;70(12):2917–21.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Khunti Okay, Davies MJ, Kosiborod MN, Nauck MA. Lengthy COVID—metabolic danger elements and novel therapeutic administration. Nat Rev Endocrinol. 2021;17(7):379–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Su Y, Yuan D, Chen DG, Ng RH, Wang Okay, Choi J, Li S, Hong S, Zhang R, Xie J, et al. A number of early elements anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881-895.e820.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Finer N, Garnett SP, Bruun JM. COVID-19 and weight problems. Clin Obes. 2020;10(3): e12365.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Yates T, Razieh C, Zaccardi F, Davies MJ, Khunti Okay. Weight problems and danger of COVID-19: evaluation of UK biobank. Prim Care Diabetes. 2020;14(5):566–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Sattar N, Ho FK, Gill JM, Ghouri N, Grey SR, Celis-Morales CA, Katikireddi SV, Berry C, Pell JP, McMurray JJ, et al. BMI and future danger for COVID-19 an infection and demise throughout intercourse, age and ethnicity: preliminary findings from UK biobank. Diabetes Metab Syndr. 2020;14(5):1149–51.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Gerotziafas GT, Catalano M, Colgan MP, Pecsvarady Z, Wautrecht JC, Fazeli B, Olinic DM, Farkas Okay, Elalamy I, Falanga A, et al. Steerage for the administration of sufferers with vascular illness or cardiovascular danger elements and COVID-19: place paper from VAS-European Unbiased Basis in Angiology/Vascular Drugs. Thromb Haemost. 2020;120(12):1597–628.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, Bi Z, Zhao Y. Prevalence and influence of cardiovascular metabolic illnesses on COVID-19 in China. Clin Res Cardiol. 2020;109(5):531–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Malek AE, Raad II, Jabbour E. Most cancers and COVID-19. Lancet. 2020;396(10257):1066–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Neri T, Nieri D, Celi A. P-selectin blockade in COVID-19-related ARDS. Am J Physiol Lung Cell Mol Physiol. 2020;318(6):L1237-l1238.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Coomes EA, Haghbayan H. Interleukin-6 in COVID-19: a scientific overview and meta-analysis. Rev Med Virol. 2020;30(6):1–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rostami M, Mansouritorghabeh H. D-dimer stage in COVID-19 an infection: a scientific overview. Skilled Rev Hematol. 2020;13(11):1265–75.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lancellotti S, Sacco M, Basso M, De Cristofaro R. Mechanochemistry of von Willebrand issue. Biomol Ideas. 2019;10(1):194–208.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nevzorova TA, Mordakhanova ER, Daminova AG, Ponomareva AA, Andrianova IA, Le Minh G, Rauova L, Litvinov RI, Weisel JW. Platelet issue 4-containing immune complexes induce platelet activation adopted by calpain-dependent platelet demise. Cell Loss of life Discov. 2019;5:106.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Brodard J, Kremer Hovinga JA, Fontana P, Studt JD, Gruel Y, Greinacher A. COVID-19 sufferers usually present high-titer non-platelet-activating anti-PF4/heparin IgG antibodies. J Thromb Haemost. 2021;19(5):1294–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Johnston I, Sarkar A, Hayes V, Koma GT, Arepally GM, Chen J, Chung DW, López JA, Cines DB, Rauova L, et al. Recognition of PF4-VWF complexes by heparin-induced thrombocytopenia antibodies contributes to thrombus propagation. Blood. 2020;135(15):1270–80.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Oronsky B, Larson C, Hammond TC, Oronsky A, Kesari S, Lybeck M, Reid TR. A overview of persistent post-COVID syndrome (PPCS). Clin Rev Allergy Immunol. 2021. https://doi.org/10.1007/s12016-021-08848-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Proal AD, VanElzakker MB. Lengthy COVID or post-acute sequelae of COVID-19 (PASC): an outline of organic elements that will contribute to persistent signs. Entrance Microbiol. 2021;12: 698169.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lee J, Kang Y, Chang J, Track J, Kim BK. Dedication of serotonin focus in single human platelets by means of single-entity electrochemistry. ACS Sens. 2020;5(7):1943–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cloutier N, Allaeys I, Marcoux G, Machlus KR, Mailhot B, Zufferey A, Levesque T, Becker Y, Tessandier N, Melki I, et al. Platelets launch pathogenic serotonin and return to circulation after immune complex-mediated sequestration. Proc Natl Acad Sci U S A. 2018;115(7):E1550-e1559.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Keyes SR, Rudnick G. Coupling of transmembrane proton gradients to platelet serotonin transport. J Biol Chem. 1982;257(3):1172–6.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lesch KP, Wolozin BL, Murphy DL, Reiderer P. Main construction of the human platelet serotonin uptake web site: identification with the mind serotonin transporter. J Neurochem. 1993;60(6):2319–22.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Xie Z, Li Z, Shao Y, Liao C. Discovery and improvement of plasma kallikrein inhibitors for a number of illnesses. Eur J Med Chem. 2020;190: 112137.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hofman Z, de Maat S, Hack CE, Maas C. Bradykinin: inflammatory product of the coagulation system. Clin Rev Allergy Immunol. 2016;51(2):152–61.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weinstock LB, Brook JB, Walters AS, Goris A, Afrin LB, Molderings GJ. Mast cell activation signs are prevalent in long-COVID. Int J Infect Dis. 2021;112:217–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kolte D, Shariat-Madar Z. Plasma Kallikrein inhibitors in heart problems: an revolutionary therapeutic strategy. Cardiol Rev. 2016;24(3):99–109.

    PubMed 
    Article 

    Google Scholar
     

  • Loimaranta V, Hepojoki J, Laaksoaho O, Pulliainen AT. Galectin-3-binding protein: a multitask glycoprotein with innate immunity capabilities in viral and bacterial infections. J Leukoc Biol. 2018;104(4):777–86.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Sindrewicz P, Yates EA, Turnbull JE, Lian LY, Yu LG. Interplay with the heparin-derived binding inhibitors destabilizes galectin-3 protein construction. Biochem Biophys Res Commun. 2020;523(2):336–41.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Colomb F, Wang W, Simpson D, Zafar M, Beynon R, Rhodes JM, Yu LG. Galectin-3 interacts with the cell-surface glycoprotein CD146 (MCAM, MUC18) and induces secretion of metastasis-promoting cytokines from vascular endothelial cells. J Biol Chem. 2017;292(20):8381–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Peretz ASR, Rasmussen NS, Jacobsen S, Sjöwall C, Nielsen CT. Galectin-3-binding protein is a novel predictor of venous thromboembolism in systemic lupus erythematosus. Clin Exp Rheumatol. 2021;39(6):1360–8.

    PubMed 
    Article 

    Google Scholar
     

  • Adams JC. Thrombospondin-1. Int J Biochem Cell Biol. 1997;29(6):861–5.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Aburima A, Berger M, Spurgeon BEJ, Webb BA, Wraith KS, Febbraio M, Poole AW, Naseem KM. Thrombospondin-1 promotes hemostasis by means of modulation of cAMP signaling in blood platelets. Blood. 2021;137(5):678–89.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Patsouras M, Tsiki E, Karagianni P, Vlachoyiannopoulos PG. The position of thrombospondin-1 within the pathogenesis of antiphospholipid syndrome. J Autoimmun. 2020;115: 102527.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Völlmy F, van den Toorn H, Zenezini Chiozzi R, Zucchetti O, Papi A, Volta CA, Marracino L, Vieceli Dalla Sega F, Fortini F, Demichev V, et al. A serum proteome signature to foretell mortality in extreme COVID-19 sufferers. Life Sci Alliance. 2021;4(9):e202101099. https://doi.org/10.26508/lsa.202101099.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lourido L, Ayoglu B, Fernández-Tajes J, Oreiro N, Henjes F, Hellström C, Schwenk JM, Ruiz-Romero C, Nilsson P, Blanco FJ. Discovery of circulating proteins related to knee radiographic osteoarthritis. Sci Rep. 2017;7(1):137.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Yoshihara Y, Plaas A, Osborn B, Margulis A, Nelson F, Stewart M, Rugg MS, Milner CM, Day AJ, Nemoto Okay, et al. Superficial zone chondrocytes in regular and osteoarthritic human articular cartilages synthesize novel truncated types of inter-alpha-trypsin inhibitor heavy chains that are hooked up to a chondroitin sulfate proteoglycan apart from bikunin. Osteoarthr Cartil. 2008;16(11):1343–55.

    CAS 
    Article 

    Google Scholar
     

  • Solmaz I, Kocak E, Kaplan O, Celebier M, Anlar B. Evaluation of plasma protein biomarkers in childhood onset a number of sclerosis. J Neuroimmunol. 2020;348: 577359.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Kell DB, Heyden EL, Pretorius E. the biology of lactoferrin, an iron-binding protein that may assist defend in opposition to viruses and micro organism. Entrance Immunol. 2020;11:1221.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zhou Y, Liao X, Track X, He M, Xiao F, Jin X, Xie X, Zhang Z, Wang B, Zhou C, et al. Extreme adaptive immune suppression could also be why sufferers with extreme COVID-19 can’t be discharged from the ICU even after unfavourable viral assessments. Entrance Immunol. 2021;12: 755579.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Harada E, Itoh Y, Sitizyo Okay, Takeuchi T, Araki Y, Kitagawa H. Attribute transport of lactoferrin from the intestinal lumen into the bile by way of the blood in piglets. Comp Biochem Physiol A Mol Integr Physiol. 1999;124(3):321–7.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Matsuzaki T, Nakamura M, Nogita T, Sato A. Mobile uptake and launch of intact lactoferrin and its derivatives in an intestinal enterocyte mannequin of Caco-2 Cells. Biol Pharm Bull. 2019;42(6):989–95.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Fang H, Judd RL. Adiponectin regulation and performance. Compr Physiol. 2018;8(3):1031–63.

    PubMed 
    Article 

    Google Scholar
     

  • Palmer C, Hampartzoumian T, Lloyd A, Zekry A. A novel position for adiponectin in regulating the immune responses in power hepatitis C virus an infection. Hepatology. 2008;48(2):374–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Hochepied T, Berger FG, Baumann H, Libert C. Alpha(1)-acid glycoprotein: an acute section protein with inflammatory and immunomodulating properties. Cytokine Development Issue Rev. 2003;14(1):25–34.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ceciliani F, Lecchi C. The immune capabilities of α(1) acid glycoprotein. Curr Protein Pept Sci. 2019;20(6):505–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Barroso-Sousa R, Lobo RR, Mendonça PR, Memória RR, Spiller F, Cunha FQ, Pazin-Filho A. Decreased ranges of alpha-1-acid glycoprotein are associated to the mortality of septic sufferers within the emergency division. Clinics (Sao Paulo). 2013;68(8):1134–9.

    Article 

    Google Scholar
     

  • Shen B, Yi X, Solar Y, Bi X, Du J, Zhang C, Quan S, Zhang F, Solar R, Qian L, et al. Proteomic and metabolomic characterization of COVID-19 affected person sera. Cell. 2020;182(1):59-72.e15.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Track JW, Lam SM, Fan X, Cao WJ, Wang SY, Tian H, Chua GH, Zhang C, Meng FP, Xu Z, et al. Omics-driven techniques interrogation of metabolic dysregulation in COVID-19 pathogenesis. Cell Metab. 2020;32(2):188-202.e185.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Thomas T, Stefanoni D, Reisz JA, Nemkov T, Bertolone L, Francis RO, Hudson KE, Zimring JC, Hansen
    KC, Hod EA, Spitalnik SL, D’Alessandro A. COVID-19 an infection alters kynurenine and fatty acid metabolism,
    correlating with IL-6 ranges and renal standing. JCI Perception. 2020;5(14):e140327. https://doi.org/10.1172/jci.perception.140327. PMID: 32559180; PMCID: PMC7453907.

  • Hannun YA, Obeid LM. Sphingolipids and their metabolism in physiology and illness. Nat Rev Mol Cell Biol. 2018;19(3):175–91.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wu D, Shu T, Yang X, Track JX, Zhang M, Yao C, Liu W, Huang M, Yu Y, Yang Q, et al. Plasma metabolomic and lipidomic alterations related to COVID-19. Natl Sci Rev. 2020;7(7):1157–68.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kyle JE, Burnum-Johnson KE, Wendler JP, Eisfeld AJ, Halfmann PJ, Watanabe T, Sahr F, Smith RD, Kawaoka Y, Waters KM, et al. Plasma lipidome reveals essential sickness and restoration from human Ebola virus illness. Proc Natl Acad Sci U S A. 2019;116(9):3919–28.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Bruzzone C, Bizkarguenaga M, Gil-Redondo R, Diercks T, Arana E, Garcíade Vicuña A, Seco M, Bosch A, Palazón A, San Juan I, et al. SARS-CoV-2 an infection dysregulates the metabolomic and lipidomic profiles of serum. iScience. 2020;23(10): 101645.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nie S, Zhao X, Zhao Okay, Zhang Z, Zhang Z, Zhang Z: Metabolic disturbances and inflammatory dysfunction predict severity of coronavirus illness 2019 (COVID-19): a retrospective research. medRxiv. 2020:2020.2003.2024.20042283.

  • Casari I, Manfredi M, Metharom P, Falasca M. Dissecting lipid metabolism alterations in SARS-CoV-2. Prog Lipid Res. 2021;82: 101092.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Das UN. Can bioactive lipids inactivate coronavirus (COVID-19)? Arch Med Res. 2020;51(3):282–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kell DB, Pretorius E. The potential position of ischaemia-reperfusion harm in power, relapsing illnesses equivalent to rheumatoid arthritis, lengthy COVID, and ME/CFS: proof, mechanisms, and therapeutic implications. Biochem J. 2022;479(16):1653–708.

    PubMed 
    Article 

    Google Scholar
     

  • Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and autoimmunity: a overview on the potential interplay and molecular mechanisms. Viruses. 2019. https://doi.org/10.3390/v11080762.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rojas M, Rodríguez Y, Acosta-Ampudia Y, Monsalve DM, Zhu C, Li QZ, Ramírez-Santana C, Anaya JM. Autoimmunity is a trademark of post-COVID syndrome. J Transl Med. 2022;20(1):129.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Winchester N, Calabrese C, Calabrese LH. The intersection of COVID-19 and autoimmunity: what’s our present understanding? Pathog Immun. 2021;6(1):31–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Steinz MM, Persson M, Aresh B, Olsson Okay, Cheng AJ, Ahlstrand E, Lilja M, Lundberg TR, Rullman E,
    Möller KÄ, Sandor Okay, Ajeganova S, Yamada T, Beard N, Karlsson BC, Tavi P, Kenne E, Svensson CI, Rassier DE,
    Karlsson R, Friedman R, Gustafsson T, Lanner JT. Oxidative hotspots on actin promote skeletal muscle weak point
    in rheumatoid arthritis. JCI Perception. 2019;5(9):e126347. https://doi.org/10.1172/jci.perception.126347. PMID: 30920392;
    PMCID: PMC6538353.

  • Liu Y, Ebinger JE, Mostafa R, Budde P, Gajewski J, Walker B, Joung S, Wu M, Bräutigam M, Hesping F, et al. Paradoxical sex-specific patterns of autoantibody response to SARS-CoV-2 an infection. J Transl Med. 2021;19(1):524.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Charnley M, Islam S, Bindra GK, Engwirda J, Ratcliffe J, Zhou J, Mezzenga R, Hulett MD, Han Okay, Berryman JT, et al. Neurotoxic amyloidogenic peptides within the proteome of SARS-COV2: potential implications for neurological signs in COVID-19. Nat Commun. 2022;13(1):3387.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Nyström S, Hammarström P. Amyloidogenesis of SARS-CoV-2 spike protein. J Am Chem Soc. 2022;144(20):8945–50.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Natarajan A, Zlitni S, Brooks EF, Vance SE, Dahlen A, Hedlin H, Park RM, Han A, Schmidtke DT, Verma R, et al. Gastrointestinal signs and fecal shedding of SARS-CoV-2 RNA recommend extended gastrointestinal an infection. Med (N Y). 2022;3(6):371-387.e379.

    CAS 

    Google Scholar
     

  • Pascolini S, Vannini A, Deleonardi G, Ciordinik M, Sensoli A, Carletti I, Veronesi L, Ricci C, Pronesti A, Mazzanti L, et al. COVID-19 and immunological dysregulation: can autoantibodies be helpful? Clin Transl Sci. 2021;14(2):502–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, Barman L, Bennett Okay, Chakraborty S, Chang I, et al. New-onset IgG autoantibodies in hospitalized sufferers with COVID-19. Nat Commun. 2021;12(1):5417.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Klein J, Wooden J, Jaycox J, Lu P, Dhodapkar RM, Gehlhausen JR, Tabachnikova A, Tabacof L, Malik AA, Kamath Okay et al. Distinguishing options of lengthy COVID recognized by means of immune profiling. medRxiv. 2022:2022.2008.2009.22278592.

  • Chertow D, Stein, S., Ramelli, S. et al.: SARS-CoV-2 an infection and persistence all through the human physique and mind. ResearchSquare 2021. https://doi.org/10.21203/rs.3.rs-1139035/v1.

  • Cheung CCL, Goh D, Lim X, Tien TZ, Lim JCT, Lee JN, Tan B, Tay ZEA, Wan WY, Chen EX, et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from 5 recovered sufferers with COVID-19. Intestine. 2022;71(1):226–9.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Leave a Comment