T cells particular for α-myosin drive immunotherapy-related myocarditis

  • Wang, D. Y. et al. Deadly poisonous results related to immune checkpoint inhibitors: a scientific evaluation and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wei, S. C. et al. A genetic mouse mannequin recapitulates immune checkpoint inhibitor-associated myocarditis and helps a mechanism-based therapeutic intervention. Most cancers Discov. 11, 614–639 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lv, H. et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the guts in mice and people. J. Clin. Make investments. 121, 1561–1573 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gabrielsen, I. S. M. et al. Transcriptomes of antigen presenting cells in human thymus. PLoS ONE 14, e0218858 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, D. B. et al. Fulminant myocarditis with mixture immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hu, J.-R. R. et al. Cardiovascular toxicities related to immune checkpoint inhibitors. Cardiovasc. Res. 115, 854–868 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salem, J. E. et al. Spectrum of cardiovascular toxicities of immune checkpoint inhibitors: a pharmacovigilance research. Lancet Oncol. 19, 1579–1589 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moslehi, J., Lichtman, A. H., Sharpe, A. H., Galluzzi, L. & Kitsis, R. N. Immune checkpoint inhibitor–related myocarditis: manifestations and mechanisms. J. Clin. Make investments. (2021).

  • Zamami, Y. et al. Components related to immune checkpoint inhibitor-related myocarditis. JAMA Oncol. 5, 1635–1637 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Salem, J.-E. et al. Abatacept for extreme immune checkpoint inhibitor-associated myocarditis. N. Engl. J. Med. 380, 2377–2379 (2019).

    PubMed 

    Google Scholar
     

  • Yang, X., Bam, M., Becker, W., Nagarkatti, P. S. & Nagarkatti, M. Lengthy noncoding RNA AW112010 promotes the differentiation of inflammatory T cells by suppressing IL-10 expression by way of histone demethylation. J. Immunol. 205, 987–993 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • Jackson, R. et al. The interpretation of non-canonical open studying frames controls mucosal immunity. Nature. 564, 434–438 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adamo, L. et al. Myocardial B cells are a subset of circulating lymphocytes with delayed transit by way of the guts. JCI Perception (2020).

  • Bönner, F., Borg, N., Burghoff, S. & Schrader, J. Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic damage. PLoS ONE (2012).

  • Martini, E. et al. Single-cell sequencing of mouse coronary heart immune infiltrate in stress overload-driven coronary heart failure reveals extent of immune activation. Circulation. 140, 2089–2107 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Li, O., Zheng, P. & Liu, Y. CD24 expression on T cells is required for optimum T cell proliferation in lymphopenic host. J. Exp. Med. 200, 1083–1089 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hubbe, M. & Altevogt, P. Warmth-stable antigen/CD24 on mouse T lymphocytes: proof for a costimulatory operate. Eur. J. Immunol. 24, 731–737 (1994).

    CAS 
    PubMed 

    Google Scholar
     

  • Szabo P. A., Miron M. & Farber D. L. Location, location, location: tissue resident reminiscence T cells in mice and people. Sci. Immunol. (2019).

  • Fonseca, R. et al. Runx3 drives a CD8+ T cell tissue residency program that’s absent in CD4+ T cells. Nat. Immunol. 23, 1236–1245 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, L. et al. Main hostile cardiovascular occasions and the timing and dose of corticosteroids in immune checkpoint inhibitor-associated myocarditis. Circulation 141, 2031–2034 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coutinho, A. E. & Chapman, Ok. E. The anti-inflammatory and immunosuppressive results of glucocorticoids, current developments and mechanistic insights. Mol. Cell. Endocrinol. 335, 2–13 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heather, J. M. et al. Stitchr: stitching coding TCR nucleotide sequences from V/J/CDR3 info. Nucleic Acids Res. 1, e68 (2022).


    Google Scholar
     

  • Rosskopf, S. et al. A Jurkat 76 based mostly triple parameter reporter system to guage TCR features and adoptive T cell methods. Oncotarget 9, 17608–17619 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jutz, S. et al. Evaluation of costimulation and coinhibition in a triple parameter T cell reporter line: simultaneous measurement of NF-κB, NFAT and AP-1. J. Immunol. Strategies. 430, 10–20 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Gil-Cruz, C. et al. Microbiota-derived peptide mimics drive deadly inflammatory cardiomyopathy. Science 366, 881–886 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Massilamany, C., Gangaplara, A., Steffen, D. & Reddy, J. Identification of novel mimicry epitopes for cardiac myosin heavy chain-α that induce autoimmune myocarditis in A/J mice. Cell Immunol. 271, 438–449 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Meier, S. L., Satpathy, A. T. & Wells, D. Ok. Bystander T cells in most cancers immunology and remedy. Nat. Most cancers 3, 143–155 (2022).

    PubMed 

    Google Scholar
     

  • Maurice, N. J., McElrath, M. J., Andersen-Nissen, E., Frahm, N. & Prlic, M. CXCR3 allows recruitment and site-specific bystander activation of reminiscence CD8+ T cells. Nat. Commun. 10, 1–15 (2019).

    CAS 

    Google Scholar
     

  • Simoni, Y. et al. Bystander CD8+ T cells are ample and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Maurice, N. J., Taber, A. Ok. & Prlic, M. The ugly duckling turned to swan: a change in notion of bystander-activated reminiscence CD8 T Cells. J. Immunol. 206, 455–462 (2021).

    CAS 
    PubMed 

    Google Scholar
     

  • Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Paul, S., Sidney, J., Sette, A. & Peters, B. TepiTool: a pipeline for computational prediction of T cell epitope candidates. Curr. Protoc. Immunol. 2016, 18.19.1–18.19.24 (2016).


    Google Scholar
     

  • Falk, Ok., Rötzschke, O., Stevanović, S., Jung, G. & Rammensee, H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Luoma, A. M. et al. Molecular pathways of colon irritation induced by most cancers immunotherapy. Cell 182, 655–671.e22 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Johnson, D. B. et al. Tumor-specific MHC-II expression drives a singular sample of resistance to immunotherapy through LAG-3/FCRL6 engagement. JCI Perception 3, e120360 (2018).

    PubMed Central 

    Google Scholar
     

  • Ji, C. et al. Myocarditis in cynomolgus monkeys following remedy with immune checkpoint inhibitors. Clin. Most cancers Res. 25, 4735–4748 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell operate to advertise tumoral immune escape. Most cancers Res. 72, 917–927 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • Okazaki, T. et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to forestall autoimmunity in mice. J. Exp. Med. 208, 395–407 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chowell, D. et al. Affected person HLA class I genotype influences most cancers response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Naranbhai, V. et al. HLA-A*03 and response to immune checkpoint blockade in most cancers: an epidemiological biomarker research. Lancet Oncol. (2022).

  • Correale, P. et al. HLA expression correlates to the chance of immune checkpoint inhibitor-induced pneumonitis. Cells (2020).

  • Hasan Ali, O. et al. Human leukocyte antigen variation is related to hostile occasions of checkpoint inhibitors. Eur. J. Most cancers 107, 8–14 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • McCulloch, J. A. et al. Intestinal microbiota signatures of scientific response and immune-related hostile occasions in melanoma sufferers handled with anti-PD-1. Nat. Med. (2022).

  • Andrews, M. C. et al. Intestine microbiota signatures are related to toxicity to mixed CTLA-4 and PD-1 blockade. Nat. Med. (2021).

  • Van der Borght, Ok. et al. Myocarditis elicits dendritic cell and monocyte infiltration within the coronary heart and self-antigen presentation by typical kind 2 dendritic cells. Entrance. Immunol. 9, 2714 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rieckmann, M. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Make investments. (2019).

  • Lee, J. H. et al. Myosin-primed tolerogenic dendritic cells ameliorate experimental autoimmune myocarditis. Cardiovasc. Res. 101, 203–210 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • Tajiri, Ok. et al. A brand new mouse mannequin of continual myocarditis induced by recombinant Bacille Calmette–Guèrin expressing a T-cell epitope of cardiac myosin heavy chain-α. Int. J. Mol. Sci. 22, 794 (2021).

    CAS 
    PubMed Central 

    Google Scholar
     

  • Hua, X. et al. Single-cell RNA sequencing to dissect the immunological community of autoimmune myocarditis. Circulation (2020).

  • Taylor, J. A. et al. A spontaneous mannequin for autoimmune myocarditis utilizing the human MHC molecule HLA-DQ8. J. Immunol. 172, 2651–2658 (2004).

  • Mombaerts, P. et al. RAG-1-deficient mice haven’t any mature B and T lymphocytes. Cell 68, 869–877 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression information. Nat. Biotechnol. 33, 495–502 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic information throughout totally different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Stuart, T. et al. Complete integration of single-cell information. Cell. 177, 1888–1902.e21 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. FOXP3 controls regulatory T cell operate by way of cooperation with NFAT. Cell. 126, 375–387 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • Gao, J. et al. Integrative evaluation of advanced most cancers genomics and scientific profiles utilizing the cBioPortal. Sci. Sign. (2013).

  • Cerami, E. et al. The cBio most cancers genomics portal: an open platform for exploring multidimensional most cancers genomics information. Most cancers Discov. 2, 401–404 (2012).

    PubMed 

    Google Scholar
     

  • Oh, H. M. et al. An environment friendly methodology for the fast institution of Epstein-Barr virus immortalization of human B lymphocytes. Cell Prolif. 36, 191–197 (2003).

    MathSciNet 
    PubMed 

    Google Scholar
     

  • Granato, M. et al. Epstein–Barr virus blocks the autophagic flux and appropriates the autophagic equipment to boost viral replication. J. Virol. 88, 12715 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wölfl, M. & Greenberg, P. D. Antigen-specific activation and cytokine-facilitated growth of naive, human CD8+ T cells. Nat. Protoc. 9, 950–966 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eberhardt, C. S. et al. Purposeful HPV-specific PD-1+ stem-like CD8 T cells in head and neck most cancers. Nature 597, 279–284 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Oksanen, J. et al. vegan: Neighborhood Ecology Package deal. R package deal model 2.5-7 (2020).

  • Nazarov, V., immunarch.bot, Rumynskiy, E. immunomind/immunarch: 0.6.5: Primary single-cell help. Zenodo (2020).

  • Leave a Comment