Wang, D. Y. et al. Deadly poisonous results related to immune checkpoint inhibitors: a scientific evaluation and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).
Wei, S. C. et al. A genetic mouse mannequin recapitulates immune checkpoint inhibitor-associated myocarditis and helps a mechanism-based therapeutic intervention. Most cancers Discov. 11, 614–639 (2020).
Lv, H. et al. Impaired thymic tolerance to α-myosin directs autoimmunity to the guts in mice and people. J. Clin. Make investments. 121, 1561–1573 (2011).
Gabrielsen, I. S. M. et al. Transcriptomes of antigen presenting cells in human thymus. PLoS ONE 14, e0218858 (2019).
Johnson, D. B. et al. Fulminant myocarditis with mixture immune checkpoint blockade. N. Engl. J. Med. 375, 1749–1755 (2016).
Hu, J.-R. R. et al. Cardiovascular toxicities related to immune checkpoint inhibitors. Cardiovasc. Res. 115, 854–868 (2019).
Salem, J. E. et al. Spectrum of cardiovascular toxicities of immune checkpoint inhibitors: a pharmacovigilance research. Lancet Oncol. 19, 1579–1589 (2018).
Moslehi, J., Lichtman, A. H., Sharpe, A. H., Galluzzi, L. & Kitsis, R. N. Immune checkpoint inhibitor–related myocarditis: manifestations and mechanisms. J. Clin. Make investments. (2021).
Zamami, Y. et al. Components related to immune checkpoint inhibitor-related myocarditis. JAMA Oncol. 5, 1635–1637 (2019).
Salem, J.-E. et al. Abatacept for extreme immune checkpoint inhibitor-associated myocarditis. N. Engl. J. Med. 380, 2377–2379 (2019).
Yang, X., Bam, M., Becker, W., Nagarkatti, P. S. & Nagarkatti, M. Lengthy noncoding RNA AW112010 promotes the differentiation of inflammatory T cells by suppressing IL-10 expression by way of histone demethylation. J. Immunol. 205, 987–993 (2020).
Jackson, R. et al. The interpretation of non-canonical open studying frames controls mucosal immunity. Nature. 564, 434–438 (2018).
Adamo, L. et al. Myocardial B cells are a subset of circulating lymphocytes with delayed transit by way of the guts. JCI Perception (2020).
Bönner, F., Borg, N., Burghoff, S. & Schrader, J. Resident cardiac immune cells and expression of the ectonucleotidase enzymes CD39 and CD73 after ischemic damage. PLoS ONE (2012).
Martini, E. et al. Single-cell sequencing of mouse coronary heart immune infiltrate in stress overload-driven coronary heart failure reveals extent of immune activation. Circulation. 140, 2089–2107 (2019).
Li, O., Zheng, P. & Liu, Y. CD24 expression on T cells is required for optimum T cell proliferation in lymphopenic host. J. Exp. Med. 200, 1083–1089 (2004).
Hubbe, M. & Altevogt, P. Warmth-stable antigen/CD24 on mouse T lymphocytes: proof for a costimulatory operate. Eur. J. Immunol. 24, 731–737 (1994).
Szabo P. A., Miron M. & Farber D. L. Location, location, location: tissue resident reminiscence T cells in mice and people. Sci. Immunol. (2019).
Fonseca, R. et al. Runx3 drives a CD8+ T cell tissue residency program that’s absent in CD4+ T cells. Nat. Immunol. 23, 1236–1245 (2022).
Zhang, L. et al. Main hostile cardiovascular occasions and the timing and dose of corticosteroids in immune checkpoint inhibitor-associated myocarditis. Circulation 141, 2031–2034 (2020).
Coutinho, A. E. & Chapman, Ok. E. The anti-inflammatory and immunosuppressive results of glucocorticoids, current developments and mechanistic insights. Mol. Cell. Endocrinol. 335, 2–13 (2011).
Heather, J. M. et al. Stitchr: stitching coding TCR nucleotide sequences from V/J/CDR3 info. Nucleic Acids Res. 1, e68 (2022).
Rosskopf, S. et al. A Jurkat 76 based mostly triple parameter reporter system to guage TCR features and adoptive T cell methods. Oncotarget 9, 17608–17619 (2018).
Jutz, S. et al. Evaluation of costimulation and coinhibition in a triple parameter T cell reporter line: simultaneous measurement of NF-κB, NFAT and AP-1. J. Immunol. Strategies. 430, 10–20 (2016).
Gil-Cruz, C. et al. Microbiota-derived peptide mimics drive deadly inflammatory cardiomyopathy. Science 366, 881–886 (2019).
Massilamany, C., Gangaplara, A., Steffen, D. & Reddy, J. Identification of novel mimicry epitopes for cardiac myosin heavy chain-α that induce autoimmune myocarditis in A/J mice. Cell Immunol. 271, 438–449 (2011).
Meier, S. L., Satpathy, A. T. & Wells, D. Ok. Bystander T cells in most cancers immunology and remedy. Nat. Most cancers 3, 143–155 (2022).
Maurice, N. J., McElrath, M. J., Andersen-Nissen, E., Frahm, N. & Prlic, M. CXCR3 allows recruitment and site-specific bystander activation of reminiscence CD8+ T cells. Nat. Commun. 10, 1–15 (2019).
Simoni, Y. et al. Bystander CD8+ T cells are ample and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).
Maurice, N. J., Taber, A. Ok. & Prlic, M. The ugly duckling turned to swan: a change in notion of bystander-activated reminiscence CD8 T Cells. J. Immunol. 206, 455–462 (2021).
Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).
Paul, S., Sidney, J., Sette, A. & Peters, B. TepiTool: a pipeline for computational prediction of T cell epitope candidates. Curr. Protoc. Immunol. 2016, 18.19.1–18.19.24 (2016).
Falk, Ok., Rötzschke, O., Stevanović, S., Jung, G. & Rammensee, H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).
Luoma, A. M. et al. Molecular pathways of colon irritation induced by most cancers immunotherapy. Cell 182, 655–671.e22 (2020).
Johnson, D. B. et al. Tumor-specific MHC-II expression drives a singular sample of resistance to immunotherapy through LAG-3/FCRL6 engagement. JCI Perception 3, e120360 (2018).
Ji, C. et al. Myocarditis in cynomolgus monkeys following remedy with immune checkpoint inhibitors. Clin. Most cancers Res. 25, 4735–4748 (2019).
Woo, S. R. et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell operate to advertise tumoral immune escape. Most cancers Res. 72, 917–927 (2012).
Okazaki, T. et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to forestall autoimmunity in mice. J. Exp. Med. 208, 395–407 (2011).
Chowell, D. et al. Affected person HLA class I genotype influences most cancers response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018).
Naranbhai, V. et al. HLA-A*03 and response to immune checkpoint blockade in most cancers: an epidemiological biomarker research. Lancet Oncol. (2022).
Correale, P. et al. HLA expression correlates to the chance of immune checkpoint inhibitor-induced pneumonitis. Cells (2020).
Hasan Ali, O. et al. Human leukocyte antigen variation is related to hostile occasions of checkpoint inhibitors. Eur. J. Most cancers 107, 8–14 (2019).
McCulloch, J. A. et al. Intestinal microbiota signatures of scientific response and immune-related hostile occasions in melanoma sufferers handled with anti-PD-1. Nat. Med. (2022).
Andrews, M. C. et al. Intestine microbiota signatures are related to toxicity to mixed CTLA-4 and PD-1 blockade. Nat. Med. (2021).
Van der Borght, Ok. et al. Myocarditis elicits dendritic cell and monocyte infiltration within the coronary heart and self-antigen presentation by typical kind 2 dendritic cells. Entrance. Immunol. 9, 2714 (2018).
Rieckmann, M. et al. Myocardial infarction triggers cardioprotective antigen-specific T helper cell responses. J. Clin. Make investments. (2019).
Lee, J. H. et al. Myosin-primed tolerogenic dendritic cells ameliorate experimental autoimmune myocarditis. Cardiovasc. Res. 101, 203–210 (2014).
Tajiri, Ok. et al. A brand new mouse mannequin of continual myocarditis induced by recombinant Bacille Calmette–Guèrin expressing a T-cell epitope of cardiac myosin heavy chain-α. Int. J. Mol. Sci. 22, 794 (2021).
Hua, X. et al. Single-cell RNA sequencing to dissect the immunological community of autoimmune myocarditis. Circulation (2020).
Taylor, J. A. et al. A spontaneous mannequin for autoimmune myocarditis utilizing the human MHC molecule HLA-DQ8. J. Immunol. 172, 2651–2658 (2004).
Mombaerts, P. et al. RAG-1-deficient mice haven’t any mature B and T lymphocytes. Cell 68, 869–877 (1992).
Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. & Regev, A. Spatial reconstruction of single-cell gene expression information. Nat. Biotechnol. 33, 495–502 (2015).
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic information throughout totally different situations, applied sciences, and species. Nat. Biotechnol. 36, 411–420 (2018).
Stuart, T. et al. Complete integration of single-cell information. Cell. 177, 1888–1902.e21 (2019).
Wu, Y. et al. FOXP3 controls regulatory T cell operate by way of cooperation with NFAT. Cell. 126, 375–387 (2006).
Gao, J. et al. Integrative evaluation of advanced most cancers genomics and scientific profiles utilizing the cBioPortal. Sci. Sign. (2013).
Cerami, E. et al. The cBio most cancers genomics portal: an open platform for exploring multidimensional most cancers genomics information. Most cancers Discov. 2, 401–404 (2012).
Oh, H. M. et al. An environment friendly methodology for the fast institution of Epstein-Barr virus immortalization of human B lymphocytes. Cell Prolif. 36, 191–197 (2003).
Granato, M. et al. Epstein–Barr virus blocks the autophagic flux and appropriates the autophagic equipment to boost viral replication. J. Virol. 88, 12715 (2014).
Wölfl, M. & Greenberg, P. D. Antigen-specific activation and cytokine-facilitated growth of naive, human CD8+ T cells. Nat. Protoc. 9, 950–966 (2014).
Eberhardt, C. S. et al. Purposeful HPV-specific PD-1+ stem-like CD8 T cells in head and neck most cancers. Nature 597, 279–284 (2021).
Oksanen, J. et al. vegan: Neighborhood Ecology Package deal. R package deal model 2.5-7 (2020).
Nazarov, V., immunarch.bot, Rumynskiy, E. immunomind/immunarch: 0.6.5: Primary single-cell help. Zenodo (2020).